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 Preparing an aircraft for its next flight requires a set of interrelated services involving different types of 

vehicles. Planning decisions concerning each resource affect the scheduling of the other activities and the 

performance of the other resources. Considering the different operations and vehicles instead of scheduling 

each resource in isolation allows integrating decisions and contributing to the optimisation of the overall 

ground-handling process. This goal is defined through two objectives: (i) minimising the waiting time before 

an operation starts and the total reduction of corresponding time windows, and (ii) minimising the total 

completion time of turnarounds. We combine different technologies and techniques to solve the problem 

efficiently. A new method to address this bi-objective optimisation problem is also proposed. The approach 

has been tested using real data from a major Spanish airport, obtaining different solutions that represent a 

trade-off between both objectives. Experimental results permit inferring interesting criteria on how to optimise 

each resource, considering the effect on other operations. This outcome leads to more robust global solutions 

and to savings in resources utilization. 

Introduction 

The notable growth of air traffic in recent years has led to increasingly congested airports and significant flight delays. In 

2013, approximately 36% of European flights were delayed on departure by more than 5 minutes, with an average delay 

of 26.7 minutes (Eurocontrol, 2013). Many aircraft delays can be attributed to overlong turnarounds due to a lack of planning 

integration of the different activities and an inefficient use of resources (Titan, 2010). Turnaround is defined as the period 

of time the aircraft is on the ramp between an inbound and outbound flight. During this time, different ground-handling 

operations are performed. Ground handling comprises the activities, operations procedures, equipment requirements, and 

personnel necessary to prepare an aircraft for the next flight. These ground tasks are very interdependent. Therefore, each 

operation is a potential source of delays that could be easily propagated to other ground operations and other airport processes 

(Fricke & Schultz, 2009; Norin et al, 2009).  

Due to the hierarchy of overall airport planning, ground handlers are generally not included in the decision making of 

other scheduling processes (e.g. flight scheduling, stand allocation, etc.). This means they often must fit their planning 

around a set of hard constraints. These constraints include aircraft arrival, departure, scheduled turnaround time, and stand 

allocation, among others (Leeuwen, 2007). 

In this work, we present a novel and efficient approach to tackling the ground-handling scheduling problem from a 

global perspective, considering all activities to be performed. To the best of our knowledge, this is the first time the problem 

is treated as a whole in the literature. Thus far, other approaches have been developed to optimise operations in isolation, 

but they do not consider the relationships between all the involved activities. Regarding ramp operations, Du et al (2008) 

proposed an Ant Colony approach to schedule fuelling vehicles based on the Vehicle Routing Problem with Tight Time 

Windows (VRPTTW) with multiple objectives. Clausen (2011) focused on connecting baggage transportation and proposed 

a greedy algorithm based on an Integer Programming model for the Vehicle Routing Problem with Time Windows 

(VRPTW). Norin et al (2009) proposed an interesting integration of a simulation model of various operations during 

turnaround and the scheduling of de-icing trucks obtained by a greedy optimisation algorithm. A more sophisticated solution 

was proposed by Ho & Leung (2010) to tackle catering operations including staff workload. 
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In our approach, we do explicitly consider relationships between activities to solve the problem from a global point of 

view. To do so, we develop a bi-objective optimisation methodology aiming at minimising waiting time before operations 

start and improving overall turnaround performance. We decompose the problem to apply efficient techniques. Each task 

can be modelled as a VRPTW, as it is associated to a particular type of vehicle. These are solved individually using the 

well-known Insertion Heuristics method (Solomon, 1987) and a hybrid methodology (Guimarans, 2012). Decisions made 

on the routing of one type of vehicle are propagated to the other tasks (i.e. VRPTWs) through reductions in the available 

time windows. Modifying the order in which problems are solved yields to different time windows reductions and different 

overall solutions. To explore different sequences in an informed manner and to address the bi-objective problem, we have 

developed a new method called Sequence Iterative Method (SIM). This process has proved to be a consistent method to 

solve the complete problem and provide a range of solutions representing the best trade-off between the two objectives, as 

we show in our results on data from Palma de Mallorca airport (PMI). 

Problem description 

Ramp operations take place at the aircraft parking position between the time it arrives at the stand (In-Blocks) and its 

departure (Off-Blocks). Figure 1 shows an example of the main activities during a typical turnaround when the aircraft is 

parked at a contact point (i.e. the stand is connected to the terminal via a bridge).  

 

Fig. 1. Example of activity flow during a turnaround at a contact point 

Because the turnaround is a very complex process, its duration depends on many different variables. These include 

operational variables related to the aircraft type (size, number of seats), the number of tasks, parking position at a contact 

or remote stand, and the service time required to carry them out (full servicing or minimum servicing). Some activities are 

affected by precedence constraints imposed due to security issues, space requirements or airline policies. The end of the 

turnaround process is determined by the off-block time, when all doors are closed, the bridge is removed, the pushback 

vehicle is present and the aircraft is ready for startup and push back (Fricke & Schultz, 2009).  

A specific type of vehicle performs each operation. According to the task, some vehicles with a given capacity must 

transport some quantity of resources to the aircraft stand (e.g. catering) or collect waste from the aircraft (e.g. toilet servicing). 

Likewise, some vehicles do not transport any resource (e.g. pushback). To simplify the model, we selected the main 

activities of a full servicing turnaround on aircraft parking at a contact point. In addition, we have not considered baggage 

transportation. This task has special features in relation to other ground-handling activities (e.g. multiple trips, split servicing, 

multiple depots, etc.) and requires a specific model and solution method. 

At each aircraft, operations must be performed within the defined turnaround time. Hence, a time window to begin the 

service is assigned to each activity, which considers the duration of each task and the precedence constraints.  

Scheduling decisions made for one service affect other activities. Tasks belonging to the same aircraft are related according 

to precedence restrictions, as well as to their corresponding time windows. Due to these restrictions, the time when an operation 

begins could reduce the time windows of other activities, and consequently the performance of vehicles servicing them.  
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Optimising each resource while considering the effect on other operations permits an integration of planning decisions 

and contributes to optimising the overall ground service process. We aim to minimise the operation waiting time, i.e. 

accomplishing each operation as early as possible in relation to its original time window, and minimising the total reduction 

of time windows. This reduction may affect the number of vehicles required to service all aircraft, and therefore we 

implicitly minimise the number of required vehicles. Our second objective is to minimise the total completion time of 

ground services at each aircraft. That is, we want to balance robustness of scheduling each operation with good performance 

of the turnaround, using vehicles efficiently. 

Our first objective aims at performing operations in a set of N aircraft as soon as possible through two arguments: 

minimising the total operation waiting time and the total reduction of the time windows. Let the waiting time wi = ti – ai 

be the difference between the starting time of a given operation at aircraft i (ti) and the earliest starting time according to 

its associated time window (ai). Let i denote the time window reduction of such operation at aircraft i, such as    
               , where i (i) is the original earliest (latest) start time and ai (bi) is the actual earliest (latest) start 

time for such operation. An aggregate function    is defined to describe how early operations are performed by each vehicle 

   : 

  
                    

   

 

The first objective function F1 is then defined as: 

            
 

   

 

Let l be the last operation on each aircraft and   
  the start time of such operation at aircraft i. We then define the second 

objective function F2 in order to minimise the completion time in all N aircraft: 

           
 

   

 

Solution method 

We have developed a bi-objective algorithm for solving the ground-handling problem. This method is based on a work 

centre-based decomposition strategy (Sourirajan & Uzsoy, 2007). Most methods used to solve this decomposition derive 

from the Shifting Bottleneck procedure (Adams et al, 1988). Applying this procedure in our particular case, where each 

sub-problem is a VRPTW, can lead to long execution times. Thus, we followed a similar schema but combined two processes 

to obtain a complete solution at each iteration. In the first process, which we call Solving Process (SP), all sub-problems 

are solved one after another given a predefined order. Each time a sub-problem is solved, the time windows of the remaining 

sub-problems are updated to maintain consistency among sub-solutions. The SP is embedded in an iterative schema that 

we call Sequence Iterative Method (SIM), outlined in Figure 2. The goal of this second process is to improve the overall 

solution when dealing with the defined bi-objective optimisation problem. We modify sub-problems’ solving sequence at 

each iteration according to the previous solution, and the SP is called again with the new sequence. 

In SP, we use Constraint Programming (CP) to implement a procedure to find the time windows of each operation 

according to arrival and departure times and imposed precedence constraints between operations. Then, a sub-problem is 

identified for each task (i.e. type of vehicle) and a routing problem is solved. 

Each routing problem is solved in two stages. First, we use the well-known I3 construction heuristic (Solomon, 1987) 

to obtain a reasonably good initial solution. The number of vehicles obtained in this step is taken as an upper bound of the 

number of vehicles needed to perform the operations in all aircraft. Imposing this value as the size of the available fleet, a 

CP-based hybrid method (Guimarans, 2012) is applied in the second stage to improve the initial solution by minimising 

the operation waiting time   . In this methodology, the modelling and constraint propagation advantages of CP are 

combined with local search methods. Using the concept of operators based on Large Neighbourhood Search (LNS), the 

local search process is embedded in CP. These operators destroy and repair the solution to re-optimise parts of the problem. 

Destroy, in this case, means identifying a set of aircraft to remove from a sequence of visits. Repair refers to finding a 

better way to reinsert these aircraft into the partial solution. In addition, the methodology employs Variable Neighbourhood 

Search (VNS) to guide operators’ selection, a metaheuristic often applied to VRPs with interesting results (Guimarans 

et al, 2011). 
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Fig. 2. Flow diagram for the Sequence Iterative Method (SIM) 

After solving a sub-problem, an explicit process to update the remaining time windows is needed to ensure consistency 

with the rest of sub-problems. Once again, we take advantage of propagation features of CP to implement a simple strategy 

to maintain such consistency. Finally, when all sub-problems are solved, the SP is stopped. 

According to Sourirajan & Uzsoy (2007), determining the next machine to be scheduled is one of the more important 

steps in decomposition procedures based on Shifting Bottleneck. The sequence in which machines are included in the partial 

schedule can reduce the re-optimisation process without loss in solution quality. For this reason, we have developed the 

SIM, aiming at improving the solution by modifying the order in which sub-problems are solved. 

Following a scalarization schema for multi-objective problems (Jozefowiez et al, 2008), the problem is solved with 

respect to the first objective F1, and the value of the second objective F2 is calculated from the obtained solution. At each 

round, sub-problems’ solving sequence is modified to find a solution in the Pareto set to cover it in the best possible way. 

Regardless of the type of aircraft, the ground-handling service always finishes by pushing away the aircraft from its parking 

position (pushback). We used this information to create an initial sequence to obtain a lower bound of F2.  

Let S be the ordered set of sub-problems where each sub-problem corresponds to each type of vehicle (i.e. task) involved, 

|S|=|V|. The order in S describes the sequence in which sub-problems are solved; sl is the sub-problem corresponding to 

the last operation; B is the set of sub-problems to solve before sl such that         ; and R represents the remainder of 

sub-problems such that           .  

In the first step of the SIM, an initial sequence in S is created such that the sl is the first sub-problem to solve. When a 

sub-problem is solved first, corresponding operations are scheduled within their original time windows. If this sub-problem 

is the pushback, a lower bound of F2 is obtained. On the other hand, this reduces the original time windows of other tasks 

on the same aircraft, i.e. the time windows of the elements in R. Thus, a worse value of F1 is obtained. 

At first, the elements in R are sorted according to the actual order in which different tasks are carried out at each aircraft 

(see Figure 1). In principle, when solving the last operation first, the best value of F2 is obtained regardless the order of 

the elements in R. However, solutions found should be as close as possible to the Pareto optimal set, i.e. a solution with a 

lower bound of F2 with the minimum value of F1. Therefore, after obtaining a solution with the initial sequence by means 

of SP, sub-problems in R are ordered by their    values. Then, we repeat the process to obtain a better sequence of R.  

In a second step, SIM aims at improving the value of F1, planning the remainder of sub-problems before the last operation. 

At each round, the sub-problem with the highest value of    in R is selected for inclusion in B, and solved first. Adding 

sub-problems to B, i.e. prioritising other operations with respect to sl, usually leads to a decreasing F1. Similar to the first 

step, the chosen sub-problem is scheduled within its original time windows, which leads to a lower bound of its   . After 

scheduling all operations, we sort B and R in decreasing order of    and use SP to solve the new sequence. We repeat the 

process until no further improvements on F1 are obtained. Thus, an improvement of F1 is reached while a new value of 

F2 is found. We then select the next sub-problem to be included in B. The process is repeated until all operations are 

scheduled before sl, that is,         . 
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Computational experiments 

The methods described in this paper have been implemented in Java and linked to the CP platform ECLiPSe 6.0. All tests 

were run on a server with an Intel Xeon processor at 2.66GHz and 16GB RAM. 

To the best of our knowledge, no benchmark instances exist for the ground-handling problem. We generated a set of 

scenarios based on real data provided by PMI to validate the proposed approach. This data is subject to a strict confidentiality 

agreement and therefore cannot be disclosed. We used a flight schedule corresponding to a summer business day and 

considered all aircraft performed a turnaround. This dataset contains scheduled arrival and departure times, type of aircraft, 

and assigned parking positions. We assume constant speed to calculate vehicle travel times between these positions. In our 

instances, we modelled three types of aircraft with different sizes (types I, II and III, in increasing order).  

For each operation and using manufacturer specifications for each aircraft type, we defined the duration, precedence 

restrictions and the type of vehicle used. Three sets of instances C1, C2 and C3, were generated, modifying the precedence 

constraints to test the algorithm. The flight schedule was divided into three eight-hour shifts scheduled separately J1, J2 

and J3, servicing 42, 64 and 83 aircraft, respectively. We combined these shifts with the different sets to obtain 9 instances to 

test our approach. Table 1 provides a summary of results obtained with our methodology for the generated instances. 

Table 1. Solutions obtained for PMI instances using SIM. Non-dominated solutions are marked in bold. 

Sol. 

C1J1 C1J2 C1J3 C2J1 C2J2 C2J3 C3J1 C3J2 C3J3 

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 

1 2383 1594 3389 2362 4717 3009 2596 1589 3770 2331 4867 2994 2798 1584 3688 2360 4848 3029 

2 2165 1613 4064 2346 4281 3057 2369 1607 3309 2357 4524 3053 2748 1600 4271 2345 4715 3068 

3 1980 1621 3509 2403 4608 3067 2142 1629 3002 2381 4096 3083 2360 1635 3504 2368 4098 3110 

4 2425 1619 2619 2393 3806 3112 2364 1610 3438 2346 4394 3104 2640 1613 3036 2407 4640 3087 

5 1850 1655 2464 2414 3282 3130 1864 1670 2623 2422 3590 3109 2086 1659 3832 2403 3741 3161 

6 2154 1646 3162 2399 4121 3100 2096 1654 2869 2385 3940 3153 2476 1639 2809 2455 4521 3133 

7 1709 1695 2101 2466 3169 3185 1762 1694 2349 2464 3360 3177 1983 1670 3548 2447 3521 3181 

8 1998 1681 2904 2464 3896 3173 1784 1680 2756 2444 3046 3203 2275 1662 2543 2478 4271 3186 

9 1565 1715 1833 2490 2818 3207 1671 1707 2157 2488 3428 3215 1764 1714 2360 2517 3264 3218 

10 1816 1687 2754 2486 3547 3197 1709 1699 2586 2486 2790 3262 2170 1692 3067 2514 3964 3200 

11 1510 1736 1756 2508 2622 3264 1513 1712 1924 2513 3279 3286 1729 1734 2206 2539 3108 3280 

12 1792 1714 2499 2509 3301 3252 1676 1710 - - - - 2054 1711 2863 2522 3690 3265 

 

Vehicle utilisation is an important aspect of how scheduling decisions of a resource affect the other ones. We observed 

an increase in the vehicles needed to perform other operations whenever the pushback was solved first. Obtaining lower 

values of F2 implies a time window reduction on other operations at the same aircraft, and consequently an increment of 

employed vehicles. For instance, in C1J1 baggage operations needed 19 vehicles when pushback was solved first (Sol. 1), 

while it uses 16 when it is solved last (Sol. 11 and 12). This might be an interesting criterion to select a solution or prioritise 

an operation according to the particular situation of a vehicle type, e.g. temporary unavailability or cost-based criteria. 

In addition, we evaluated the performance of the proposed CP-based methodology to solve each task sub-problem. We 

compared our results to two modified versions of SIM: a first one using only the I3 heuristic; a second one substituting 

our approach by another state-of-the-art approach for the VRPTW (Woch & Lebkowski 2009). In the first case, our hybrid 

methodology is clearly able to improve the obtained solutions, although at a higher computational cost (Figure 3 left). In 

the second case, we found results were both comparable in quality and computational time (Figure 3 right). 
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Fig. 3. Hybrid CP-based methodology vs. using only the I3 heuristic (left) or another state-of-the-art approach for the VRPTW (right) 

Conclusion 

In the present paper, we have presented a first approach for scheduling ground-handling vehicles at an airport. Different 

operations and types of vehicles have been considered to tackle this problem from a holistic perspective. We have modelled 

ground-handling services as a bi-objective optimisation problem, aiming to integrate the scheduling decisions about each 

resource and to contribute to the optimisation of the overall process. This goal is defined through two objectives: (i) minimising 

the operations waiting time and the total reduction of the time windows, and (ii) minimising the total completion time of 

the turnarounds. The problem has been decomposed to allow the model and the solution method to be simplified without 

losing the global approach of the proposal. Decisions are propagated between different sub-problems to ensure that local 

solutions can be integrated to obtain a feasible global solution. A new method called Sequence Iterative Method has been 

developed to improve the global solution when dealing with the bi-objective optimisation problem.  

Our approach has been tested using real data from Palma de Mallorca airport and specifications from aircraft manufacturers. 

Results show that different solutions representing a trade-off between objectives were found by modifying the order in 

which operations are scheduled. Moreover, the number of vehicles needed to perform operations can change according to 

this order. This might be an important criterion to select between two solutions with similar values of the objective functions. 

Different aspects remain for further development of the presented work. The inclusion of baggage transportation or passenger 

transfer to remote stands will further enrich this study. Furthermore, we have assumed a homogeneous fleet of each type 

of vehicle. Considering a heterogeneous fleet and including this constraint in the model is another topic for future research. 
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