Optimizing military course scheduling with heterogenous resource constraints and uncertain student demand

Cheryl Eisler, Peter Dobias, and Min Jing Liu

1 Centre for Operational Research and Analysis, Defence Research and Development Canada, Ottawa, ON, Canada

Abstract

Planning and scheduling training courses across multiple occupations within the context of a small military is a complex task due to uncertain levels of demand and rapidly shifting requirements over time. Offering too many course sessions is resource intensive and may be unjustified or unaffordable from the resource perspective. On the other hand, if an insufficient number of sessions is offered, either some personnel will be not be trained or additional costs may be incurred to initiate additional last-minute sessions. Under the assumption that the historical attendance in courses is a valid predictor of demand at least in the near future, one can derive demand estimates. The objective can then be formulated as a minimization of the number of offered sessions while meeting the demand.

Introduction

The problem of class scheduling optimization has been studied in detail throughout the literature (Nakasuwan et al., 1999; Wasfy et al., 2007; Winch, 2013 to name but a few), with variations that factor in resource assignment (Badri, 1996; Gunawan, 2011), timetabling (Schaerf, 1999; Hossain et al., 2007), and various degrees of preferential heuristics (Schneiderjans, 1987; Dahiya, 2015). However, the bulk of the research problems are predicated on the knowledge of the student demand. Such an assumption about the incoming training requirement may be valid in settings where deadlines are set well in advance for course session registration and the population levels are sufficiently large. In contrast, in the military training setting – especially for small militaries [with less than 120,000 total personnel and less than 4,000 major war fighting vehicles (GlobalFirepower.com, 2018)] – the problem is more complex. Because of the specialized nature of military occupations, many courses are offered on a regular basis with mandated content (similar to undergraduate level studies in university); while the attendance is generally low (similar to graduate level classes). Predicting student demand can be difficult, as there are many variables that need to be considered, such as operational requirements, deployments, major equipment procurements or maintenance issues, or changes in policy at the organizational level, as well as health, fitness, personal and family commitments, and career changes at the individual level. Within a limited time-frame, past attendance can be used to derive probabilistic distributions for the future demand, eliminating the need to factor in all individual variables that affect the attendance. Once the student demand is estimated, the number of required sessions for each course can be calculated.

This study proposed a means of modeling the supply-demand relationship as it strove to answer two questions: 1) Considering uncertain student demand, how many sessions of each specific course should be offered in order to minimize late cancellations or additions, while also maintaining a low risk of not meeting the demand? 2) How should the session schedule be organized in order to maximize the effectiveness of the resource usage? The objective for answering these two questions was to ensure that resources would be allocated in an efficient manner, meeting but not significantly exceeding demands (i.e., avoiding the need to add or cancel sessions). By extension, this would simplify resource management, including enabling more efficient longer-term acquisition and maintenance planning.

Gurvich et al. (2010), Zambelli et al. (2009), and Eliashberg et al. (2009) propose similar variations on the problem, except only one type of resource is required to handle any given demand. In the military context, the resource considerations

* Correspondence: Cheryl Eisler, Centre for Operational Research and Analysis, Defence Research and Development Canada, 101 Colonel By Dr, Ottawa, ON, K1A 0K2, Canada
E-mail: cheryl.eisler@forces.gc.ca

Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence (2018).
are significantly more complex and include unique availability restrictions on multiple distinct types of required resources (such as warships, aircraft, ground vehicles or other major platforms, qualified trainers, classrooms, virtual or mock training environments, and the supporting logistics chain). Hence, the military training problem is highly constrained with heterogeneous resources, each with varying schedule limitations. The level of constraints limits the most common methodologies developed for civilian applications from being directly applicable to the small military training system problem.

Problem definition

The analyzed problem (Eisler et al., 2015) can be described as taking a list of offered courses with the required resources and constraints, and optimizing the session schedule with respect to a predefined scoring function. This problem was separated into two parts: 1) Estimate the required session demand (the number of students vary from year to year, from session to session); and 2) Develop a session schedule and resource assignment plan based on the identified interdependencies and constraints. The first part utilized historical data for student demand with Monte Carlo Simulation Optimization (MCSO). The second part was solved as a modification to the classical Job Shop Scheduling Problem (JSSP) (Graham, 1966). The problem at hand differed from the original JSSP due to the heterogeneous resource requirements. Furthermore, the model had to accommodate the possibility of insufficient resources.

Course loading optimization

Session quantity estimation

Historical course session attendance over a five-year period was used to forecast student demand on a course-by-course basis. The distribution functions for the demand were then applied in a MCSO to deliver maximum course capacity. The historical attendance was taken to be the number of students that completed each military training course in the past five years. Ordinarily, the cancelled sessions would count as having zero students; since the objective was to reduce or eliminate cancelled sessions, it was assumed that only the non-zero student loading was valid. Demand probability distribution functions with following rules were obtained for each course:

- 1 data point (i.e., course offered only once in the last five years): No distribution, the single data point was treated as a constant and used directly.
- 2 data points: An integer uniform distribution between the two sample values was used.
- 3 or 4 data points: A triangular distribution was used due to its simplicity to compute as a rough approximation for a random variable with an unknown distribution. The minimum \(\text{min} \), maximum \(\text{max} \), and most likely value \(M \) from the probability distribution (calculated as \(3*\text{mean} – \text{min} – \text{max} \), with \(M < \text{min} \) set as \(M = \text{min} \) and \(M > \text{max} \) set as \(M = \text{max} \)) were used as the parameters. Resulting student demand was rounded to the nearest integer value, which also eliminated the issue of a non-zero probability occurrence for the \(\text{min} \) and \(\text{max} \) values.
- 5 data points: A Poisson distribution was used, where the mean value of the samples is taken as the event rate (\(\lambda \)). Similarly, resulting student demand was rounded to the nearest integer value.

While bootstrapping techniques or other non-linear functions could have been used to represent the probability distribution functions, there was insufficient data from the sample database in order to determine better fits while maintaining realistic bounds on the sample problem size. The obtained historical distributions were then used to calculate the expected session demand using MCSO as follows. Let \(N \) be the total number of considered courses, \(x \) be the total number of scheduled sessions, \(y \) be the minimum number of sessions required to enroll all students, \(z \) be the maximum number of sessions that could be offered without cancellations due to insufficient student load, and \(p \) be the total number of students requiring courses for each course \(i \).
Then \(y \) (the minimum number of sessions required to enroll all students) is calculated based on dividing the total number of students for a course \(i \) by \(n_{\text{max}} \) (the maximum number of students per session) and \(z \) (the maximum number of sessions that could be offered without cancellations due to insufficient student load) is calculated based on dividing the total number of students for a course \(i \) by \(n_{\text{min}} \) (the minimum required number of students per session). Eq. (2) does make the simplifying assumption that the initial sessions have maximum attendance, and the final session contains the remainder.

\[
y_i = \begin{cases} \left\lfloor \frac{p_i}{n_{\text{max}}} \right\rfloor + 1, & \text{for } (p_i \mod n_{\text{max}}) \geq n_{\text{min}} \\ \left\lfloor \frac{p_i}{n_{\text{max}}} \right\rfloor, & \text{for } (p_i \mod n_{\text{max}}) < n_{\text{min}} \end{cases}, \quad \text{and } z_i = \left\lfloor \frac{p_i}{n_{\text{min}}} \right\rfloor
\]

A soft constraint or scalar penalty function \(c \), as a function of \(x, y \) and \(z \), can then be introduced.

\[
c(x, y, z) = \sum_{i=1}^{N} (h_i(x_i, y_i) + k_i(x_i, z_i))
\]

In that penalty function, \(h \) represents the number of extra sessions that must be scheduled and \(k \) represents cancelled sessions for each course:

\[
h_i(x_i, y_i) = \begin{cases} x_i - y_i, & \text{for } z_i \geq y_i \\ 0, & \text{for } x_i < y_i \end{cases}, \quad \text{and } k_i(x_i, z_i) = \begin{cases} z_i - x_i, & \text{for } z_i \geq x_i \\ 0, & \text{for } z_i < x_i \end{cases}
\]

Since \(y \) and \(z \) depend on the student demand \(p \), the selection of a single set of values for \(x \) for all simulated values of \(y \) and \(z \) becomes a penalty function minimization problem. Then, the objective function \(C \), over \(t \) trials is:

\[
C = \min(\bar{c}) = \min \left(\frac{1}{t} \left(\sum_{\mu=1}^{t} \left(\sum_{i=1}^{N} \left(h_i(x_i, y_i) + k_i(x_i, z_i)\right) \right) \right) \right) = \min \left(\frac{1}{t} \sum_{\mu=1}^{t} \left(\sum_{i=1}^{N} \left(h_i(x_i, y_i) + k_i(x_i, z_i)\right) \right) \right)
\]

with \(h_{\mu,i}, k_{\mu,i}, y_{\mu,i} \) and \(z_{\mu,i} \) being the values of \(h, k, y, z \) in \(i^{th} \) iteration.

Denote the fractional capacity of the \(i^{th} \) course, \(f_i = p_i/(n_{\text{max}} \times x_i) \), as the total number of students scheduled for that course divided by the product of the maximum allowable number of students per session and the total number of sessions to be held for course \(i \).

A second objective function \(G \) can then be defined as:

\[
G = \max(\bar{f})
\]

where \(G \) is the maximum overall fractional capacity, obtained by averaging the fractional capacity of all courses. Assuming for simplicity that the demand for a course \(i \) is independent of all other courses, \(G \) and \(C \) can be decomposed into a set of sub-problems for each course as
The value of \(c_i \) increases when \(x_i < \min(y') \) or \(x_i > \max(z') \), where \(y' \) is the vector of minimum and \(z' \) of maximum acceptable number of sessions. Hence, only the solutions \(x \in [\min(y'), \max(z')] \) can minimize the penalty functions. Thus, the optimal solution that satisfies the scalar penalty function must lie between the extrema for all samples. Since \(x \) must be integer, it is simpler to enumerate through the set of possible values that could theoretically satisfy all of the samples generated.

The algorithm for estimating the session quantities for the \(i^{th} \) course is:

Step 1: Generate \(t \) samples of expected student demand using the probability distribution function associated with the \(i^{th} \) course.

Step 2: For each sample \((x) \) of expected student demand, compute corresponding \(y, z, \) and \(p \).

Step 3: Compute \([\min(y'), \max(z')]\) for all \(t \) samples. For each integer \(x \in [\min(y'), \max(z')] \) calculate \(c' \).

The final solution is then \(c = \{\min(c'), \text{ for all } t\} \).

Resource optimization and session scheduling

Once a required number of sessions is determined, and given their durations and resource availability, the optimization problem can be summarized as finding the best choice of start dates with respect to some objective function within resource constraints. In order to reduce required computational time, resource selection was separated from the main scheduling problem. Given a start date proposed by an iteration of the scheduling algorithm, resources for each session are selected based on how full their overall schedules are. The loop is recursive; the schedule for each resource is updated and used as input to schedule resources for the next session.

The schedule optimization loop used the Frontline Systems’ evolutionary algorithm (Frontline Systems Inc., n.d.) until predefined termination conditions were met. The primary decision variables were the session start dates; the initial value was set to 1 January for all. The start dates were subject to minimum and maximum value constraints (must fall within the modeled year), and had to be integer. In order to define the objective function, the schedule capacity fraction \(cf \) was defined for one day of the schedule for all courses and sessions as:

\[
c_f = \begin{cases}
\sum_{i=1}^{N} x_i \sum_{s} c_{fs} - 1, & \text{for } \sum_{i=1}^{N} \sum_{s} c_{fs} \geq 1 \\
1, & \text{for } \sum_{i=1}^{N} \sum_{s} c_{fs} = 0
\end{cases}
\]

(9)
where the session capacity fraction, \(cf_s = T_s/T_{Total} \) is the fraction of schedule slots \(T \), that are currently assigned to a particular session. The capacity fraction \(cf \) is symmetric, with global minimum at \(cf = 1 \). Hence an empty schedule slot (\(cf = 0 \)) is scored as equally undesirable as a schedule conflict. The schedule capacity fraction is then summed over an entire schedule \(A \) to obtain the aggregate objective function \(F_{cf} \).

\[
F_{cf}(A) = \sum_{d=1}^{l} \sum_{e=1}^{m} cf(A(d,e))
\]

(10)

Where \(l \) and \(m \) represent time units; in this case, days per week and week number. The objective function (10) incorporated schedule conflicts (if any) and could, in the future, be expanded to include resource costs in the form of a weighted sum objective (Kim et al, 2005).

Sample performance

A test simulation considering \(N = 39 \) military training courses over \(l = 50 \) week time span (\(m = 7 \) days), with 113 resources separated into 9 different pools, was conducted. The provided resource pool was very limited; this led to a non-feasible solution due to non-zero resource conflict. However, the conflicts could be resolved by relaxing the resource requirements (e.g., considering some resources as optional), or by providing additional resources. Table 1 shows a summary of the results of the generated schedule from the simulation. These results suggest a course schedule leading to significant savings in additional and cancelled sessions when compared to a past schedule (Eisler et al., 2015) could be developed.

Table 1. Case study results of the generated schedule.

<table>
<thead>
<tr>
<th>Output</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint Metric ((C))</td>
<td>1,464</td>
</tr>
<tr>
<td>Additional Sessions Required ((\sum_i^N h_i))</td>
<td>1,004</td>
</tr>
<tr>
<td>Sessions Cancelled ((\sum_i^N k_i))</td>
<td>460</td>
</tr>
<tr>
<td>Aggregate Objective Function ((F_{cf}))</td>
<td>0.498</td>
</tr>
<tr>
<td>Total Sessions ((\sum_i^N x_i))</td>
<td>99</td>
</tr>
</tbody>
</table>

Conclusions

A proposed model has been used to analyze the small military course training supply and demand relationship, and identify the optimal number of sessions that should be offered in order to meet expected student demand and minimize course cancellations and surplus. Due to the likely reasonable bound on minimum and maximum session sizes (for example, it is highly unlikely that a single session will have between 10 and 1,000 students – constraints on classroom size and/or teaching resource ratios would not permit), the enumerated approach does not become overly costly to compute. This would extrapolate to potential annual cost savings in a large training program. In addition, tailoring the program delivery structure in a way that reduces the number of cancelled sessions, while offering sessions specifically at the times when limited assets (such as ships or major training simulators) are available to support them, would enable more efficient demand and supply forecasting, possibly leading to further savings. Due to the possibility of postings, assignments, and deployments in military careers – in addition to the usual family- or job-related responsibilities, health concerns, or other commitments that may interrupt training – the drop-out rate may be quite high, and should be a major consideration for future work.
References

Winch, J.K., and Yurkiewicz, J. (2013). Student Class Scheduling with Linear Programming; Proceedings for the Northeast Region Decision Sciences Institute Annual Meeting (pp. 374-386).