
Lecture Notes in Management Science (2016) Vol. 8, 86–92 ISSN 2008-0050 (Print), ISSN 1927-0097 (Online)

Copyright © ORLab Analytics Inc. All rights reserved.

www.orlabanalytics.ca

Packing regularity of permutation codes

János Barta 1, Roberto Montemanni 1 and Derek H. Smith 2
1 Dalle Molle Institute for Artificial Intelligence (IDSIA – USI/SUPSI), Galleria 2, 6928 Manno, Switzerland

{janos.barta, roberto.montemanni}@supsi.ch
2 Division of Mathematics and Statistics, University of South Wales, Pontypridd, CF37 1DL, Wales, UK

derek.smith@southwales.ac.uk

Proc. ICAOR 2016
Rotterdam, The Netherlands

 Abstract

Keywords:

Coding theory

Combinatorial optimization

Discrete geometry

Permutation codes

Sphere packing

 Permutation codes have been extensively investigated, both because of their intrinsic mathematical interest

and because of relevant applications based on error-correcting codes. The Maximum Permutation Code

Problem (MPCP) is a challenging packing problem on permutations. The objective is to maximize the size

of permutation codes with a given minimum Hamming distance between the codewords. In a similar way

to the well-known sphere packing problem, an optimal permutation packing usually has a highly regular

structure. In this paper a new idea of regularity degree of permutation codes is developed and the relationship

between packing density and regularity degree of permutation codes is investigated. Computational

experiments on random permutation packings run on different MPCPs confirm that, analogously to the

sphere packing problem, the regularity degree of permutation codes tends to increase as the code size

approaches to the optimum.

Introduction

For several centuries mathematicians have been fascinated by combinatorial problems related to permutations. Leonhard

Euler, the great mathematician of the 18th century, was one of the first who systematically studied permutations and in

particular latin squares. Two centuries later, when the works of Shannon and Hamming founded the subject of Information

Theory, new challenging combinatorial problems emerged. In particular, a crucial role is played by error-correcting codes.

These are codes capable of detecting and correcting errors during data transmission. The ability to identify and correct

errors is strongly related to the minimum Hamming distance between the codewords, i.e. the minimum number of differing

components in the codewords. Among the optimization problems concerning various error-correcting codes the Maximum

Permutation Code Problem (MPCP) is enjoying particular attention, because of its potential applications to powerline

communication (PLC) (see Colbourn et al (2004), Han Vinck (2000) and Pavlidou et al (2003)). Since one of the main

concerns in PLC is interference due to noise, a reliable error-correcting coding protocol is required. One of these is the

so-called M-ary frequency shift keying (FSK), in which a finite number of frequencies is used to modulate the signal.

Permutation codes arise as a suitable mathematical framework for FSK. Furthermore, permutation codes have been applied

also for coding with block ciphers and for the design of multilevel flash memories (see de la Torre et al (2000) and Jiang

et al (2008)). From a mathematical perspective the MPCP represents a fascinating link between coding theory, group theory

and combinatorics. The MPCP consists of finding the largest set of permutations of length n, such that the Hamming

distance between the permutations is at least equal to a fixed value d. Several different methods have been developed to

study and solve the MPCP, such as linear programming (Bogaerts (2010), Tarnanen (1999)), group theory (Deza and

Vanstone (2010), Dukes and Sawchuck (2010), Frankl and Deza (1977), Chu et al (2004)) as well as exact and heuristic

search techniques (Smith et al (2012), Barta et al (2014), Montemanni et al (2014a, 2014b), Janiszczack et al (2015)).

Studies about the MPCP show that in general the optimal, or the best known, solutions feature an extremely symmetric

configuration, comparable to the structure of a crystal. In fact, optimal codes are usually obtained by combining selected

orbits of specific permutation groups having considerable symmetry properties. On the other hand, permutation codes

based on a random packing procedure are generally far from the optimum. From this point of view the MPCP shows

remarkable similarities to the sphere packing problem in Euclidean space. The codewords of the MPCP correspond to the

centers of spheres and the minimum Hamming distance constraint corresponds to the non-overlapping constraint of the

spheres. One of the major mathematical achievements of the last decades was the proof of the Kepler Conjecture by Hales

in 1998, stating that the face-centered cubic packing, that is the well-known regular way of piling cannonballs or oranges,

is the tightest possible arrangement of spheres in space (see for instance Hales (2000)). As already proved by Gauss, this

Lecture Notes in Management Science (2016) Vol. 8

87

lattice packing has a density , which is about 74%. However, in recent years random sphere packings have been

the object of systematic investigation and it has been proved in Song et al (2008) that random sphere packings cannot exceed

a density limit of 63.4%.

The main purpose of this paper is to investigate, whether permutation codes behave similarly to sphere packings. More

specifically, the regularity degree and the packing rate of many randomly generated permutation codes are measured and

evaluated, in order to establish a relationship between these two variables. The paper starts with the formalization of the

MPCP and with the definition of the regularity measures for permutation codes. The algorithm used for generating random

permutation codes is then presented and finally the last section is devoted to the discussion of the computational results.

The maximum permutation code problem

Any codeword of length n in a permutation code can be obtained by permuting the n-tuple x0 = [0, 1, ..., n - 1] ∈ N
n

. Let

Ωn be the set of all codewords of length n. A permutation code C is simply a set of codewords that is a subset of Ωn. As

already mentioned, the ability of permutation codes to identify and correct errors is related to the minimum Hamming

distance between the elements. The Hamming distance dH(x, y) between codewords x and y is the number of components

that differ in the two codewords. For any code C ⊆ Ωn with |C| > 1 the code distance is defined as

δ(C) = ∈ (1)

In other words, δ(C) corresponds to the minimum distance between the codewords belonging to the code C. The MPCP

can now be formulated as follows.

Definition 1. Given a codeword length n and a distance d, the maximum permutation code problem MPCP consists of the

determination of a largest code C ⊆ Ωn that satisfies the code distance constraint δ(C) ≥ d.

In the sequel, MPCPs will be denoted by means of their characterizing parameters n and d and the maximum number of

codewords of an (n, d)-problem will be indicated by M(n,d). In analogy to the packing density of the sphere packing

problem, the packing rate of a permutation code can be defined as follows:

Definition 2. Let C be a feasible code of an (n, d)-problem. The packing rate ρ(C) is the ratio of the code size |C| to the total

number of permutations, that is

ρ(C) =

 (2)

Measuring the packing regularity

When glass marbles are poured in a box, usually the random disposal of the spheres presents holes in-between, although

no more marbles can be inserted. Randomly generated permutation codes of an (n, d)-problem have very similar features.

Definition 3. Let C be a permutation code of an (n, d)-problem. C is called a maximal code, if Cꞌ
 ⊃ C, such that δ(Cꞌ) ≥ d.

In other words, no further codeword can be added to the code C without violating the code distance constraint. A

well- known characteristic of the sphere packing problem is that the tightest possible arrangement of spheres has a highly

regular pattern. An interesting issue is whether optimal permutation codes have analogous regularity features.

The distance pattern

The problem that arises is, how to measure the regularity degree of a feasible solution C of an (n, d)-problem. A natural

approach is to look for regular patterns in the distance matrix of the solution.

Proc. ICAOR 2016

88

Definition 4. Let C = {x1, ..., x|C|
} be a feasible code of an (n, d)-problem made up of |C| codewords. Define the distance

matrix D of the code C by D(i,j) = dH(xi,xj), ∀i, j ∈{1, ..., |C|}.

The following definition introduces the concept of distance pattern of a codeword in a permutation code.

Definition 5. Let f(k) be the number of occurrences of the distance k ∈{d, ..., n} between a codeword x ∈ C and the rest of

the codewords in the code C. We call the array f = [f(d), ..., f(n)] the distance pattern of codeword x.

As the distance pattern provides an insight into the relative position of a codeword with respect to the other ones, the

number of different distance patterns encountered in a code C, denoted by φ(C), might be a simple but effective regularity

indicator: the less different distance patterns are there, the more regular is the solution.

The sectorial balance

If the distance pattern gives information about the local structure around the codewords, the second regularity parameter that

we adopt measures the overall homogeneity of the code within the complete set of codewords Ωn. The idea of partitioning

the search space Ωn, introduced in Barta et al (2014) and applied in Barta et al (2015), Montemanni et al (2014a, 2014b),

can be generalized as follows:

Definition 6. Denote by Sij the set of codewords having the i-th component equal to j-1, that is Sij = {x ∈ Ωn | x(i) = j-1},

∀ i, j ∈ {1, ..., n}.

It is interesting to remark that, by fixing the component index i, the collections of sets {Si1, ..., Sin} form partitions of

Ωn. However, also the collections of sets {S1j, ..., Snj}, obtained by fixing the value index j, form partitions of Ωn. An

effective way to measure the homogeneity of the distribution of a permutation code C, is to count the number of
codewords belonging to each subset Sij.

Definition 7. Let P(i, j) be the number of codewords in a code C belonging to the sector Sij. We refer to the n×n matrix P

with components P(i, j) as the sectorial partition matrix of the code C.

A peculiar property of the sectorial partition matrix P is that all its rows and columns sum up to |C|, since each of them

represents a specific partition of the code. In a completely homogeneous solution it might be expected that the codewords

are equally distributed with respect to the sectors, that is, each sector S contains exactly

codewords. In general, the

balance degree of a code can be measured in the following manner.

Definition 8. Let P be the partition matrix of a code C. We define the balance deviation dev(C) of the code C by

 (3)

The balance deviation dev(C) corresponds to the standard deviation of the number of codewords in each sector Sij with

respect to the average value .

Optimal codes of problem (6,5)

The case of the problem (6,5) is particularly interesting, because it has a high number of optimal solutions, that is codes

with size |C| = 18, however only four different structures have been observed. Table 1 summarizes the distance patterns of
the 4 classes of optimal solutions C1, ..., C4. As shown in Table 1, the codes of type C1 are perfectly regular, because all

codewords have the same distance pattern and furthermore the balance deviation is equal to 0. This means that any
C1-solution has exactly 3 codewords in each sector Sij. On the other hand, the classes C2, C3 and C4 provide a remarkable

example of optimal, but not completely symmetric permutation codes. For instance, codes of type C2 have four different

distance patterns (the number of their occurrence is reported in column 3) and a balance deviation equal to 0.408. Finally,

the comparison of the values of φ(C) and dev(C) suggests a positive correlation between the two regularity indicators.

Lecture Notes in Management Science (2016) Vol. 8

89

Generation of random permutation codes

Exact vs. heuristic algorithms

Theoretically, any MPCP can be solved by applying a suitable exact algorithm, such as a linear program or an exhaustive

branch and bound search. However, as shown by several studies (see for instance Barta et al (2014), Bogaerts (2010),

Montemanni et al (2015), Smith and Montemanni (2012)), exact algorithms can handle only small-sized (n,d)-problems,
because of the combinatorial explosion of the search space Ωn. Currently, state-of-the-art exact algorithms are able to

solve to optimality only (n,d)-problems with n 6 and some special cases of larger instances.

Table 1. Regularity degree of optimal (6,5)-codes

On the other hand, many attempts have been made to generate feasible codes for larger instances by exploiting group

theoretical knowledge on permutations (see Barta et al (2015), Chu et al (2004), Deza and Vanstone (1978)). The codes

obtained by such algebraic approaches are obviously highly symmetric, but usually there is no way to tell whether they

are optimal and whether there are other less regular equivalent solutions, as in the case of problem (6,5).

One main purpose of this study is to describe and test a fast heuristic algorithm, able to produce, by means of a random

exploration of the search space, a large number of maximal codes for problems with n > 6.

Description of the algorithm CodeExplorer

The search algorithm, referred in the sequel as CodeExplorer, starts by generating an initial solution C by choosing

codewords in a random way from the set of feasible codewords, denoted by Rem, which is initially set to Ωn. Whenever a

codeword x is picked from Rem and added to the code C, the whole neighbourhood U(x) = {xꞌ ∈ Rem | dH(x, xꞌ) < d} of x

is removed from Rem. This procedure is then repeated until Rem is empty.

At this point an exploration step is carried out, by retracting a given number Ndel of the elements in C. The codewords

to be deleted are chosen randomly. Consequently, the set Rem of the unused feasible codewords is updated and a new
maximal code Cnew is obtained by adding randomly chosen codewords from Rem until this set is exhausted again. If

Cnew represents an improvement in terms of the number of codewords, it is stored as the best current code. Finally, Cnew

is assigned to the current code C and a new exploration step can be performed. A more schematic description of the algorithm

CodeExplorer is provided by the following pseudocode.

Step 1. Initialization

 Set Rem := Ωn, C = and Cbest = .

Step 2. Completion to a maximal code

Proc. ICAOR 2016

90

 Choose a random codeword x ∈ Rem. Update C := C {x} and Rem := Rem\U(x). Repeat Step 2 until Rem .

Step 3. Update and exit criterion
 If |C| > |Cbest| update Cbest := C. Stop if the maximum number of iterations is reached.

Step 4. Retracting

 Select randomly Ndel codewords out of C and remove them from C. Add to Rem all codewords

x ∈ Ωn\C that are compatible with C (in terms of Hamming distance). Go to Step 2.

Computational experiments

The main purpose of the computational experiments reported in this section is to measure the regularity degree of a large

number of maximal codes and to establish a relationship with the size of the solutions. The algorithm CodeExplorer

described in the previous section is tailored for this task. At each iteration, the heuristic algorithm CodeExplorer builds a

maximal code C of the (n,d)-problem and computes its regularity indicators, as explained before. In order to investigate

the correlation between regularity and size, the values of the regularity indicators have been clustered depending on the

code size |C|.

Tables 2-4 give a statistical overview of the regularity features of three different (n,d)-problems: (6,4), (6,5) and (7,5).

For each instance 1,000,000 maximal codes have been generated and evaluated by our algorithm. The first column of each

table shows the clusters of maximal codes ordered by code size. The following six columns report the minimum, the

maximum, respectively the average value of the regularity indicators φ(C), i.e. the number of different distance patterns

within a code and dev(C), the balance deviation, as previously defined. All the tests reported in this section have been

obtained by running the algorithm CodeExplorer encoded in ANSI C on a computer equipped with an Intel Core i5 2.3

GHz processor and 8 GB of memory.

Since the optimum of problem (6,4) is known to be 120 (see for instance Smith and Montemanni (2012)), clusters of 10

units have been adopted in Table 2. The rate of retracted codewords at each iteration has been fixed to 60%. A higher rate

would require significantly more computation time, since each step would involve an almost complete reconstruction of

the code. Essentially, the low values of the regularity indicators φ(C) and dev(C) in the upper clusters of problem (6,4)

show that, these solutions have a high degree of regularity. It is worth noticing that all optimal (6,4)-solutions found

correspond to a unique, perfectly regular structure. As the code size decreases, the values of the regularity indicators clearly

tend to increase, with a maximum around 70-80 codewords. In other words, a middle layer of mainly irregular codes can

be observed between 50 and 90 codewords. Finally, the lowest clusters show a clear decrease in the regularity indicators.

This effect is actually reasonable, because the codewords in extremely small maximal codes have to be placed so that no

other codeword can fit in the empty spaces. Therefore it is not surprising to find high regularity in the low region.

Table 2. Size vs regularity: (6,4)-maximal codes

Lecture Notes in Management Science (2016) Vol. 8

91

Table 3. Size vs regularity: (6,5)-maximal codes

Table 4. Size vs regularity: (7,5)-maximal codes

Table 5. Average code size and packing rate

As already observed in Table 1, problem (6,5) features four classes of optimal codes, each one of 18 codewords. A series
of experiments with the algorithm CodeExplorer showed that about 42% of them are of the fully regular C1-type, whereas

about 58% of the optimal codes are slightly irregular! The results in Table 3 show highly regular patterns for |C| = 18, then

a large central zone (between 8 and 17 codewords), containing a mix of mainly irregular structures and some regular

codes. A higher degree of regularity can be observed again in the lowest clusters |C| = 7 and |C| = 6.

Table 4 contains the statistical results of problem (7,5). The fact that (7,5) is currently an open problem, that is not yet

solved to optimality, makes it particularly challenging. Explicitly computed (7,5)-codes of size 77 can be obtained by
assembling 11 orbits of a C7 permutation group (for more details see Barta et al (2015), Smith and Montemanni (2012)).

Due to the considerable size of the problem, it is not possible to generate in a reasonable time large solutions by adding

codewords in a random way. Therefore, as an initial solution for the search with CodeExplorer we adopted a regular 77-code

based on C7-orbits with a retracting rate of 15%. The results presented in Table 4 are clustered with a cluster size of five

Proc. ICAOR 2016

92

units. The regularity profile of problem (7,5) presents strong similarities with the previously discussed instances: a peak of

irregularity can be observed around 60 codewords and from these values upwards there is a clear decreasing trend. The

largest solutions are 77-codes with a unique highly regular, fully balanced structure. However, these solutions are formed

by two different distance patterns. A decreasing tendency of the regularity indicators is observable also downwards.

Finally, Table 5 compares the average packing rate of randomly generated codes with the packing rates of the best

known solutions for the three (n,d)-problems considered. The retracting rate has been set to 100%. The results clearly

show that on average random packings are significantly weaker than the best known codes.

Conclusions

This study focuses entirely on the metric structure of permutation codes and on a possible relationship between size and

regularity. The results strengthen the intuition that large-sized and in particular optimal codes are in general also highly

symmetric. However, a remarkable case of not completely regular but optimal code has been observed. The tools developed

in this work might be helpful in the future to estimate, whether the current best solution of an open problem is likely to be

the optimum or not.

References

Barta J., Montemanni R. and Smith D.H. (2014). A branch and bound approach to permutation codes. Proceedings of

IEEE ICOICT, 187–192.

Barta J., Montemanni R. and Smith D.H. (2015). Permutation Codes via Fragmentation of Group Orbits, Proceedings of

IEEE ICOICT, 39–44.

Bogaerts M. (2010). New upper bounds for the size of permutation codes via linear programming. The El. Jour. of

Combinatorics. 17(#R135).

Chu W., Colbourn C.J. and Dukes P. (2004). Constructions for permutation codes in powerline communications. Designs,

Codes and Cryptography 32, 51–64.

Colbourn C.J., Kløve T. and Ling A.C.H. (2004). Permutation arrays for powerline communication and mutually orthogonal

latin squares. IEEE Trans. Inform. Theory 50, 1289–1291.

De la Torre D.R., Colbourn C.J. and Ling A.C.H. (2000). An application of permutation arrays to block ciphers, Proceedings

of the 31st Int. Conf. on Combinatorics, Graph theory and Computing vol 145, 5-7.

Deza M. and Vanstone S.A. (1978). Bounds for permutation arrays. J. Statist. Plann. Inference 2, 197–209.

Dukes P. and Sawchuck N. (2010). Bounds on permutation codes of distance four. J. Alg. Comb. 31, 143–158.

Frankl P. and Deza M. (1977). On maximal numbers of permutations with given maximal or minimal distance. J. Combin.

Theory Ser. A 22, 352–260.

Hales T. (2000). Cannonballs and honeycombs. Notices of the American Mathematical Society. 47(4), 440–449.

Han Vinck A.J. (2000). Coded modulation for power line communications. A.E.U. Int. J. Electron. Commun. 54(1), 45–49.

Janiszczak I., Lempken W., Ostergard P.R.J. and Staszewski R. (2015) Permutation codes invariant under isometries.

Designs, Codes and Cryptography 75(3), 497-507.

Jiang A., Mateescu R., Schwartz M. and Bruck J., Rank modulation for flash memories. Proceedings of the IEEE Symposium

on Information Theory, 1731-1735, 2008.

Montemanni R., Barta J. and Smith D.H. (2014a). Permutation codes: a branch and bound approach. Proceedings of

PMAMCM, 86–90.

Montemanni R., Barta J. and Smith D.H. (2014b). Permutation codes: a new upper bound for M(7,5). Proceedings of

ICIAC, 1–3.

Montemanni R., Barta J. and Smith D.H. (2015). The design of permutation codes via a specialized maximum clique

algorithm. Proceedings of IEEE MCSI.

Pavlidou N., Han Vinck A. J., Yazdani J. and Honary B. (2003). Powerline communications: state of the art and future

trends. IEEE Communications Magazine 41(4), 34–40.

Smith D.H. and Montemanni R. (2012). A new table of permutation codes. Design, Codes and Cryptography 63(2), 241–253.

Song C., Wang P. and Makse H.A. (2008). A phase diagram for jammed matter. Nature 453 (7195), 629–632.

Tarnanen H. (1999). Upper bounds on permutation codes via linear programming. Eur. J. Combin. 20, 101–114.

