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 Advance admission scheduling in the field of health care is an important and complex problem. Often, exact 

models of realistic size cannot be solved due to the curse of dimensionality and heuristics have to be used. 

In this paper we consider the appointment schedule of a physician’s day. We assume patient types defined 

by different time preferences and service time lengths. Patient requests for the day are handled directly 

during a booking horizon. We present a mixed integer linear programming model to determine a set of 

appointments to offer a patient requesting an appointment. The objective is to schedule the requesting pa-

tient while also taking future demand into account. We want to maximize the overall utilization assuring a 

certain fairness level. We further perform a simulation in order to test the mixed integer linear program 

and to compare it to simpler online heuristics. We develop different scenarios and show that using the 

mixed integer linear program to schedule patients is beneficial. 

Introduction 

To increase efficiency in outpatient clinics is one of the current issues in European health care systems. Due to the 

demographic development and the increase of chronic and psychological diseases outpatient clinics are facing an 

augmenting number of appointment requests (European Commission,  2015). One of the important parameters to increase 

the efficiency of clinical processes in outpatient clinics is the design of their appointment scheduling system. Apart from a 

few exceptions, the clear majority of publications on appointment scheduling models does not simultaneously take patient 

time preferences and different service time lengths into consideration. 

The studies of  (Gerard et al., 2008) and (Cheraghi-Sohi et al., 2008) underline the relevance of individual patient time 

preferences when arranging appointments. According to surveys of Klassen and Rohleder a quarter of the patients has 

concrete time preferences (Klassen & Rohleder, 1996). Considering patient time preferences when arranging appointments 

even has positive effects for the outpatient clinics: Patients are highly satisfied, so that both the number of no-shows and 

the number of patients migrating to other clinics decrease (Feldman et al., 2014). Then again, the resulting appointment 

flexibility for patients can lead to a high variance of daily capacity utilization, so that outpatient clinics should carefully 

decide how much appointment flexibility they want to offer to their patients (Feldman et al., 2014). 

Service durations in outpatient clinics depend on different aspects such as patient specific characteristics (e.g. age, 

degree of disease progression, cultural background) (Gupta & Denton, 2008) and service specific characteristics (e.g. 

medical problem, new vs. return patients) (Cayirli et al., 2003).  

Literature review 

Advance admission scheduling, i.e., the problem of assigning appointments for future days dynamically, is difficult. 

Considering patients’ choice makes the problem even more complex. Often, exact models of realistic size cannot be solved 

due to the curse of dimensionality (Liu & Ryzin, 2008). Hence, heuristics and simulation are used to tackle the problem. 

Our procedure of assigning appointment requests to free time slots is based on the dynamic optimization model of  

(Hahn-Goldberg, 2014). Firstly, a proactive template is generated based on the expected appointment requests for the 

following day. Then, this template is used to assign free appointments to the current appointment requests. In situations in 

which the template does not contain a suitable appointment for the current request the template is updated with consideration 

of the already scheduled appointments and the current request.  
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In (Rohleder & Klassen, 2000) the authors integrate patient time preferences into their simulations. They compare 

different appointment scheduling rules with regard to their effects on patients' waiting times, physicians' idle times and the 

returns of the clinic. In order to consider patient time preferences, they distinguish between normal and special appointment 

requests. Two performance criteria are looked at: the proportion of special request patients receiving the specific 

appointment requested and the proportion of special request patients not receiving any appointment. 

In the dynamic appointment scheduling model of (Wang & Gupta, 2011) an appointment request is characterized by a 

set of preferred appointment times and a preferred physician. The clinic tries to assign an acceptable time-physician-

combination to each appointment request while maximizing its returns. Since the clinic return function includes the 

probabilities of patients accepting their offered appointment, this model implicitly takes patient time preferences into 

consideration. Wang and Gupta solve this optimization problem with two different heuristics.  

In (Feldman et al., 2014) a set of appointment days is offered to the patient who then chooses his preferred appointment 

day out of this set. The optimization model determines for each possible set of appointment days the optimal probability 

with which this set of days should be offered to the patients. They maximize the number of patients showing up for their 

appointments with regard to the clinic capacity where the show-up probability depends on the patient’s time preferences. 

Feldman et al. solve their dynamic model by means of a heuristic. In (Wang & Fung, 2015) the appointment length is the 

same for all patients. The clinic offers a set of time-physician-combinations to each patient with the aim of maximizing 

the expected return of the clinic. The dynamic program is solved via an approximate dynamic programming approach 

using an LP-formulation with an affine approximation of the value function. 

In contrast to the existing appointment scheduling models we consider both patient time preferences and different service 

time lengths. Additionally, we determine appointment times not only appointment days. The main difference to the scheduling 

procedure of Hahn-Goldberg is that the presented model generates a new template schedule for every request.  

Model 

In our model we consider the appointment schedule of a physician’s day. We assume that there exists a booking horizon 

during which patients are able to call or to go online to book an appointment for that day. We further assume that patients 

can be divided into different patient types. Here, a type is defined by a service time length (time of treatment that is needed 

for a patient of that type) and by time preferences with respect to the possible appointment slots. For every patient type we 

assume that the request arrival process for appointments during the booking horizon is an (inhomogeneous) Poisson 

process. We assume that the patient type of every incoming request is known and that the request has to be handled right 

away. The considered day is divided into   equal time intervals. Every possible service time length is a multiple of the 

interval length. To handle a request, a set of appointments matching the patient’s service time length has to be offered 

(overlapping is not allowed). The patient then chooses one of these appointments or rejects and leaves. The challenge is to 

offer patients a set of fitting appointments such that the probability that this patient accepts one of them is high. At the 

same time we want to take future demand into account. The overall goal hereby is to maximize the utilization of the 

schedule or equivalently to minimize the unused time intervals at the end of the booking horizon. We suppose that patients 

who accepted an appointment will show up.  

In order to determine a set of appointments to offer to an incoming request we solve a mixed integer linear program. 

This model considers already assigned appointments. Further, it tries to schedule the incoming request and the expected 

future requests by reserving appointments for every patient type. The objective function maximizes the expected utilization 

of the schedule at the end of the boking horizon assuming that every appointment is offered to one patient of the corresponding 

type. In the objective function the probability     of accepting an offered appointment is set to   for already assigned 

appointments. The resulting reserved appointments for the requesting patient’s type not yet assigned are potential 

appointments to offer to him or her. In Table 1 the sets, parameters and variables are defined. Our model (MILP) then 

results in: 

 

max              
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Constraint     ensures that the number of appointments reserved for patient type   plus a deviation is given by the 

number of already assigned appointments plus the expected demand of that type. In constraint     we ensure that no 

appointment can last longer than the whole day. Constraint     makes overlapping of appointments impossible. It is 

assumed fair to schedule a number of appointments of type   proportional to the number of expected requests of type  . 

Constraints     and     ensure that there can only be a certain deviation from this proportion through setting parameter  . 

This can be seen through rearranging the assertion        
  

      
            . Here, 

  

      
 is the share of expected 

demand of type   and         is the number of reserved appointments for patients of type   (not including already 

assigned appointments). Constraint     fixes the already assigned appointments. Constraints     and     are the domain 

constraints. In addition, to ensure the consideration of the current request of type  , we augment the expected demand 

from now until the end of the booking horizon of type    which is     by 1.  

Table 1. Sets, parameters and decision variables of the model 

Sets  

  Set of types 

  Set of time intervals of the day 

  
Set of tuples of already assigned appointments               where   is the first time  

interval of the appointment 

Parameters  

    
Probability that a patient of type   accepts an appointment starting in time interval   if only this  

appointment is offered (Probability is set to one for already assigned appointments) 

   Service length for a patient of type   

   Expected demand of type   from now until the end of the booking horizon 

   Number of already assigned appointments of type   

                           

  Fairness parameter 

Variables  

    
Binary variable that equals   if time interval   is the starting time interval of an appointment  

reserved for a patient of type   

   Demand of type   that is not considered (    ) or that is over considered (    ) 
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Numerical experiments 

In order to test our model we performed a simulation. Patient requests are generated according to a Poisson process (this 

could easily be extended to inhomogeneous Poisson processes). For every appointment request the mixed integer model is 

solved and the set of reserved appointments for the requesting patient’s type is offered to the patient. We apply the logit 

decision model presented in (McFadden, 1973) to model the patient’s choice. That means given a set   of decision alternatives, 

the probability of choosing alternative     for a patient of type   is given by     
         

             
 , where     is the 

expected benefit of a type   patient for choice    In our case   either is given by an appointment (denoted by its starting 

time interval  ) or by the choice not to accept any offered appointment. At the end of the booking horizon we count 

the number of unused time intervals. Besides, we measure unfairness. For every patient type   we define unfairness as 

the deviation of the proportion of assigned appointments for type   to the number of overall assigned appointments from 

the proportion of incoming requests of type   to the number of all incoming requests. The overall unfairness is the sum of 

the absolute values of those deviations. To validate our model, we compare the simulation results of our model to the 

results of two online scheduling heuristics we developed and to the offline MILP. Online heuristic 1 offers all fitting 

appointments (with respect to service length).  Online heuristic 2 only offers the earliest appointment that fits (with 

respect to service length). We believe online heuristic 2 is similar to the appointment assignment procedure in many practices. 

Before the beginning of the booking horizon, the offline model knows how many patients of each patient type will show 

up. In this case the MILP only needs to be solved once in the beginning and then the appointments are assigned according 

to the known procedure. Interviews of Klassen and Rohleder with receptionists of outpatient clinics showed that clinics 

scheduled a three-hour morning session and a four-hour afternoon session and that the appointments were scheduled in 

ten-minutes-intervals (Klassen & Rohleder, 1996). Therefore we use 42 time intervals per day in our numerical experiments. In 

(Cayirli et al., 2003)  new and return patients are distinguished and they detect that the service time of new patients is 

twice as long as the service time of return patients. We experimented with different time preferences and service lengths. 

Here, we present scenarios that especially show the benefit of our model. The first scenarios are characterized by service 

lengths that are not multiples of each other. We combine two different service lengths - two and three time intervals - with 

three different time preferences: morning, afternoon and all day and obtain 6 patient types. To be more precise, we suppose 

that         for time intervals   that correspond to the time preference of patients type  , otherwise we assume      . 

The benefit of rejecting any offered appointment is set to      0 for               and to     4.1 for              

These settings result in very high accepting probabilities of      for fitting time slots. Patient types 1, 2 and 3 have a service 

time length of 2 whereas patient types 4, 5 and 6 have a service time length of 3. We consider 4 constructed scenarios with 

different overall demand levels (defining the Poisson process parameter) and different demand proportions as can be seen 

in Table 2.  We consider two more scenarios which are characterized by a patient group that accepts only morning 

appointments and a flexible patient group which prefers the morning appointments to the afternoon appointment. In contrast 

to the first 4 scenarios, the flexible patient group with morning preferences is characterized by         for morning time 

intervals and       for afternoon intervals. 

Table 2. Scenarios 

Scenario 
Service 

lengths 
Time preferences 

Expected number of patients 

over  

the booking horizon per type 

Expected overall  

demand in time slots 

1 2, 3 morning, afternoon, all day [3, 3, 3, 2, 2, 2] 36 

2 2, 3 morning, afternoon, all day [6, 6, 3, 4, 4, 2] 60 

3 2, 3 morning, afternoon, all day [6, 6, 6, 4, 4, 4] 72 

4 2, 3 morning, afternoon, all day [9, 9, 9, 6, 6, 6] 108 

5 1, 2 
morning, all day with  

morning preference 
[9,9,6,6] 42 

6 1, 2 
morning, all day with  

morning preference 
[18,18,12,12] 84 
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The first scenario corresponds to an expected under-utilization, the fifth scenario corresponds to an expected 

full-utilization whereas the other scenarios correspond to an expected exceed of the daily time capacity. As a solver we 

use IBM ILOG CPLEX 12.6.2. As a programming environment for the simulation we use the IBM ILOG CPLEX 

Optimization Studio. Every considered scenario was simulated several times until the 95% confidence interval of the 

number of unused time intervals and unfairness reached a predefined length (e.g.      for unfairness) which was defined 

as small as possible considering an upper bound of 40 to 60 minutes of simulation time. Further, it takes around 3 seconds 

to solve the mixed integer linear program once.  

In the following, we compare the simulation results of our model with the simulation results of the online heuristics and 

the offline model. Here, we set the fairness parameter to     (such that the unfairness values of the mixed integer linear 

program (MILP) are of a similar size as the unfairness values of online heuristic 1). In Table 3 you can see the average 

values for the number of unused time intervals (Un. time inter.) and unfairness for the 6 scenarios. 

Table 3. Results of the numerical experiments for unused time intervals and unfairness 

Scenarios 
MILP Online 1 Online 2 Offline 

Un. time inter. Unfairn. Un. time inter. Unfairn. Un. time inter. Unfairn. Un. time inter. Unfairn. 

1 9.24±0.77 0.07±0.01 11.38±0.51 0.11±0.01 18.58±1.15 0.62±0.05 9.07±0.74 0.15±0.01 

2 1.77±0.27 0.22±0.01 5.89±0.28 0.27±0.01 10.20±0.75 0.62±0.04 2.81±0.32 0.24±0.01 

3 0.78±0.08 0.24±0.01 4.51±0.13 0.31±0.01 2.00±0.50 0.40±0.02 1.24±0.25 0.28±0.01 

4 0.77±0.72 0.29±0.01 4.94±0.16 0.31±0.01 0.40±0.07 0.41±0.02 0±0.00 0.27±0.01 

5 4.84±0.63 0.08±0.01 6.91±0.58 0.15±0.01 11.58±0.56 0.28±0.01 4.69±0.69 0.10±0.01 

6 0.02±0.02 0.25±0.01 0.09±0.06 0.29±0.01 0.8±0.28 0.54±0.02 0.36±0.09 0.19±0.01 

 

First of all, we can see in Table 3 that the MILP and the offline MILP yield similar results. Therefore, the exact demand 

knowledge does not lead to significantly better results compared to only having expected demand values when using this 

MILP. Further, we see that online heuristic 2 in general yields significantly worse results than the MILP. It tries to avoid 

gaps in the schedule through offering only the first fitting appointment. But as it does not consider preferences, some 

patients reject the offer and in the end more time intervals are left unused. The MILP also yields significantly better 

results than online heuristic 1. In our opinion this is due to the fact that the MILP considers the expected future demand. 

In particular, for the scenarios 1 to 4 the MILP considers the service time lengths of the future demand whereas online 

heuristic 1 leaves gaps of one time interval in the schedule which cannot be assigned to any patient type. For the scenarios 

5 and 6, the MILP especially considers the time preferences of the future demand while online heuristic 1 schedules a 

flexible patient with preferences for the morning to a morning time slot. In this way possible appointments for the patient 

group with only morning preferences are blocked.  

Conclusion and outlook 

In this paper we presented a mixed integer linear programming model determining a set of appointments to offer to a 

patient with certain time preferences and a service length in order to schedule this patient while also taking future demand 

into account to maximize the overall utilization while assuring a certain fairness level. Possible future work on the model 

includes more sensitivity analyses considering the model parameters. In addition, the presented model can be extended in 

several ways. The assumption that the type of a patient is known can be relaxed. In addition, data from outpatient clinics 

about time preferences and service time lengths should be collected and clustered in order to find realistic patient types. 

Further, it could be beneficial to generate more than one schedule for every patient request in order to find even more 

appointments to offer. One could consider several days at the same time testing the limits of the mixed integer programming 

model. For large problems constraint programming could be applied as it has been done in (Hahn-Goldberg et al., 2014).  
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