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 This paper proposes heuristics for the single machine scheduling problem, in which two agents are considered. 

A set of jobs is involved in each agent and processed by only one processing resource. The objective is to 

minimize the total completion time of jobs in the first agent subject to an upper bound on the total completion 

time of the jobs for second agent. We propose two heuristics motivated by the shortest processing time 

(SPT) first rule to solve this problem. For evaluating the performance of proposed heuristics, numerical 

experiment is performed on randomly generated problem instances. We use the optimal algorithm from 

existing literature to evaluate the performance of proposed heuristics for small problems up to 20 jobs. We 

also used bigger problem instances up to 150 jobs to evaluate the performance of heuristics. 

Introduction 

Scheduling is a decision-making tool, which try to utilize limited resources via optimizing job schedules (Pinedo 2012, 

Cardoen et al. 2009). This paper considers two agents (agent A and B) having a set of jobs to get processed by a single 

machine. There are two research directions in terms of objective function considered in two agents scheduling problem. In 

the first direction each agent objective is assigned some weights and the weighted objectives are minimized (Baker et al. 

2003). The second direction considers the minimizing objective function of one agent subject to an upper bound on the 

objective function for other agent (Agnetis, 2004; Agnetis, 2009). This paper considers the two agents problem in which the 

completion time of jobs of one agent is minimized subject to the pre-specified level of upper bound on the total completion 

time of jobs of other agent. This scheduling problem has been proved by Agnetis et al. (2004) as a binary NP-hard. 

Literature Review 

Two comprehensive and systemic studies on the single-machine with two agents scheduling problems has been published 

by Baker et al. (2003) and Agnetis et al. (2004). In multi-agent related scheduling problem, the crucial factor is the 

“determination of non-dominated schedule” (Agnetis, Pacciarelli et al. 2007, Wan, Vakati et al. 2010). Agnetis et al. (2004) 

illustrated polynomial time algorithm and NP-hardness proof for different problems. Furthermore, Agnetis et al. (2009) 

addressed different bounding schemes for the same two-agent scheduling problems. 

Many papers published considered the two agents model in machine scheduling environment (Agnetis, Pacciarelli et al. 

2007, Cheng, Ng et al. 2008, Liman, Panwalkar et al. 1996, Nong, Cheng et al. 2011, Wan and Yen 2009, Yin, Wu et al. 

2012a). Baker et al. (2003) analyzed and examined the implications of scheduling objective function and three basic 

scheduling criteria, makespan, maximum lateness and total weighted completion time. Li and Yuan (2012) studied 

algorithms for solving objective functions in which job families are incompatible or compatible. Many papers introduced 

an aging effect and a learning effect in their paper (Mosheiov 2001, Liu, Tang et al. 2010; Cheng et al., 2011). Yin et al. 

(2012b) considered release dates in their paper and objective to minimize the total tardiness. They further considered 

minimizing the earliness penalties as the objective. Number of papers considered impacts from pre-emptive jobs, such as 

papers written by Wan et al. (2010) and Leung et al. (2010) and they allow for pre-emptions. The single machine scheduling 

problem with objective to minimize total completion time of jobs from agent A subject to an upper bound on makespan of 

agent B is considered by Gajpal et al. (2014) and Gajpal and Sahu (2014). 
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Problem Description 

In our study, two agents (agent A and B) are processed by a common single machine. Each agent has job sets    and    

for agents A and B respectively. Job set       
     

       
       

   consists of    jobs from agent A and job set    

   
     

       
       

   consists of    jobs from agent B. Without loss of generality we assume that two job sets have been 

sorted in non-decreasing order of their processing time. Thus,    
 /  

  represents the job which has the shortest processing 

time among the jobs of agent A/B, and    
 /   

  represents the job which has the longest processing time for agent A/B.  

The processing time of job   
  and   

  is denoted by   
 , l = 1…,   , and   

  , m = 1…,    respectively. We can denote 

the completion time of job   
   from agent A and job   

  from agent B by   
     and   

     respectively, for a given job 

sequence  . The objective of agent A can be denoted by       and the objective of agent B can be denoted by      . 

The objective function (the total completion time of jobs in agent A) can be defined as:           
    

  
   . The objective 

for agent B is minimizing the total completion time and it can be denoted as:          
    

  
   .  

The overall objective function of the considered problem is to minimize the total completion time       of agent A, 

subject to an upper bound Q on the maximum total completion time       of agent B. Based on previous literature, the 

problem in this paper can be denoted as:        
      

           
    

  
   . The value of   is a fixed number. Although 

this problem has been proved to be an NP-hard, this problem can be solved in pseudo polynomial time. We would like to 

investigate what is the maximum size of problem that can be solved by the exact algorithm.  

The Exact Algorithm 

The pseudo polynomial time algorithm was introduced by Agnetis et al. (2004) to solve the problem. However, there were 

no numerical results reported by them using this algorithm. We provide detailed description of the exact algorithm and 

some boundary condition missing from the paper of Agnetis et al. (2004).  The following property can be easily proved 

for two agents scheduling problem considered in this paper: 
Property: In an optimal schedule   , jobs of agent A and agent B appears in the non-decreasing order of their process time. 

 The proof is easy and it can be obtained by simple exchange of jobs. This property is used to design exact algorithm. 

Let        denote the sum of the processing times of first l shortest jobs in agent A and first m shortest jobs in agent B 

(Agnetis, Mirchandani et al. 2004). The job set of l shortest job of agent A can be denoted by       
       

         
  . And 

the job set of m shortest job of agent B can be denoted by       
       

         
  . The term        represents “the sum 

of the processing times of the l shortest A-jobs and the l shortest jobs from agent B”. 

Let          represents the optimal solution for the problem considered in this paper with first l jobs from agent A and 

first m jobs from agent B. The range of value of q can be conditioned to [0, Q], and all of the value of   should be integer. 

According to Agnetis et al. (2004), we can use the dynamic programming formula: 

 

                                    
                   . 

 

The last job in the optimal schedule could be from agent A or agent B. Two situations need to be considered in optimal 

solution. First, if the last job is   
 , then, the completion time of   

  can be denoted by            
 . This formula 

means the completion time of the preceding job of   
  plus the processing time of   

 . Second situation is that the last job is   
 . 

The optimal value of the problem can be found on           . The following boundary condition is provided by 

Agnetis et al. (2004).  

                               
                            

 

The boundary conditions for the case when problem consists with the jobs of agent A only or the case where the problem 

consists with the jobs of agent B only are not provided by Agenetis et al. (2004). The boundary condition for the case with 

only B jobs can be represented as follows: 
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In this case, the problem consists with the j job from agent B and no jobs from agent A. If    
     

       the schedule 

is feasible, and the objective function    
     will be zero. On the other hand, if    

     
     , then the solution will 

be infeasible and thus          is    to show that the problem is infeasible. 

Another extreme case: when the problem consists with the jobs from agent A only is: 

 

            
     

       
 

The term          represents the problem in which there is no job of agent B. In this case,    
       and thus 

   
     will always be less than q. Hence, the optimal solution for the function above should equal to the total completion 

time of jobs from agent A if all jobs in the sequence are coming from agent A. 

The Proposed Heuristic Algorithms 

We propose two heuristics which are motivated by the shortest processing time first (SPT) rule of single machine scheduling.  

Heuristic 1 

In this heuristic we assume that all jobs from agent B are processed together continuously and considered as a single job 

  . First the A jobs are sequenced according to SPT rule and then B jobs are inserted in this sequence such that the total 

completion time of B is less than Q. The detailed procedure and algorithm is illustrated as follows: 

Step 1: The jobs from agent A are sorted in increasing order of processing time, to get sequence:       
     

     
  

     
  .  

Step 2: The jobs from agent B are sorted in increasing order of processing time, to get sequence:       
     

     
  

      
  .  

Step 3: Let      represents the total completion time of agent B for sequence   . Insert    into the sequence    to get 

the final sequence  . Let      
  and      

  represent the sets of jobs processed before    and after    respectively in 

final sequence  . The sequence    is inserted in    in such a way that the total completion time of jobs in      
  is 

less or equal to            . 

Step 4: Calculate the total completion time of jobs from agent A for sequence  . 

Heuristic 2 

In this heuristic, the jobs from agent A and agent B are arranged together in non-decreasing order of their processing 

times. The detailed procedure and algorithm is illustrated below: 

Step 1: The jobs from agent A and agent B are sorted together in non-decreasing order of processing time to build sequence 

 . If solution is infeasible then go to step 2, otherwise go to step 3. 

Step 2: Make the schedule feasible by moving the jobs from agent B towards the beginning of the sequence. We move the 

first job from agent B towards beginning, position by position, until the restricted condition (         is satisfied. If 

this restricted condition can not be satisfied, then we move other jobs of agent B towards beginning until sequence 

  becomes feasible. If feasible solution is found, go to step 4. 

Step 3: Improve the objective function by moving the jobs from agent B in towards the end of the schedule direction. We 

move the last B-job towards the end of the schedule, position by position, until the upper bound Q for    
  is 

violated. If the upper bound Q is not violated, then we move other jobs of agent B in backward direction until 

sequence   beomes feasible. And then, go to step 4. 
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Step 4: Calculate the of total completion time of jobs from agent A. 

Numerical Analysis 

We generated two types of data set called small data set and bigger data set. The small data set varies from 5 to 20 jobs 

while the big data set varies from 30 to 150 jobs. The processing time of jobs in two agents is scattered over the range [1, 25] 

uniformly. The processing times for all data sets are considered to be integers. In order to make our final schedule feasible, 

the value of Q has been set by        
           

 , where α was assigned randomly between 0.4 to 0.6. This paper 

uses 29 problem instances to test the performance of proposed algorithm. For evaluating the performance of our heuristics, 

we calculated the optimal solution for our research problem as well and compared our heuristics’ results with the optimal 

solution. The data size for problem instances used to get solved by optimal algorithm was limited to 20 jobs per agent. 

The proposed algorithm is coded in C++ and was implemented on AMD Opteron 2.3 GHz with 16GB RAM. We use 

the absolute percentage deviation (APD) and relative percentage deviation (RPD) to evaluate the performance of proposed 

heuristics. The value of APD can be calculated as: 

 

      
                                   

                
      

 

The value of RPD can be calculated as: 

 

     
                                

             
      

 

In table 1, we compare results of proposed heuristics with the optimal solutions for evaluating two heuristics by using 

the absolute percentage deviation. The APD is mainly for evaluating the results via computing how far the heuristic solution 

is away from the optimal solution.  In table 2, we compare two heuristics internally by using the relative percentage deviation. 

We denoted following notations for result reporting. 

OPT: Optimal solution for the problem; 

ABS: Absolute value of the solution obtained by the heuristic; 

APD: Absolute percentage deviation; 

RPD: Relative percentage deviation. 

Table 1. Computational results for OPT and two heuristics for small data set.  

nA nB Q 

OPT Heuristic 1 Heuristic 2 

ABS CPU Time ABS APD 
CPU 

Time ABS APD 
CPU 

Time 

5 5 354 323 < 1 424 31.27 < 1 335 3.72 < 1 

6 6 666 401 < 1 491 22.44 < 1 401 0.00 < 1 

7 7 690 530 < 1 665 25.47 < 1 544 2.64 < 1 

8 8 1036 680 < 1 835 22.79 < 1 688 1.18 < 1 

9 9 1237 1083 < 1 1220 12.65 < 1 1089 0.55 < 1 

10 10 1170 992 < 1 1309 31.96 < 1 1011 1.92 < 1 

11 11 1435 1367 < 1 1572 15.00 < 1 1391 1.76 < 1 

12 12 2173 1533 < 1 1935 26.22 < 1 1536 0.20 < 1 

13 13 2876 1956 < 1 2321 18.66 < 1 1990 1.74 < 1 

14 14 2444 1938 < 1 2392 23.43 < 1 1950 0.62 < 1 

15 15 2785 2653 < 1 3175 19.68 < 1 2682 1.09 < 1 
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nA nB Q 

OPT Heuristic 1 Heuristic 2 

ABS CPU Time ABS APD 
CPU 

Time ABS APD 
CPU 

Time 

16 16 3467 3165 < 1 3498 10.52 < 1 3199 1.07 < 1 

17 17 4756 3106 < 1 3743 20.51 < 1 3136 0.97 < 1 

18 18 3573 3060 < 1 3728 21.83 < 1 3101 1.34 < 1 

19 19 5197 3145 < 1 3869 23.02 < 1 3176 0.99 < 1 

20 20 4947 3921 < 1 4521 15.30 < 1 3994 1.86 < 1 

Average 1865.81 
 

2231.13 21.30 
 

1888.94 1.35 
 

 

Table 1 reports the optimal solution, results of heuristics, and absolute performance deviation of proposed heuristics. 

We can see the comparison between the optimal solution and the result of proposed heuristics. We can solve the problem 

up to 20 jobs, because the pseudo polynomial time algorithm is a three-dimension array and it will be confined by the 

memory. The result presented in table 1 shows that the Heuristic 1 and Heuristic 2 are away from the optimal solution by 

21.30% and 1.35% respectively. The performance of Heuristic 2 is much better than the Heuristic 1. Furthermore, we notice 

that with the increasing of the number of jobs, the value of APD of heuristic 2 does not change. With respect to the CPU 

time, all problem instances can be calculated in fraction of seconds. Even the optimal solution is able to solve the 20 job 

problem in few seconds. Our optimal algorithm could not solve bigger problem instances mainly because of the limited 

C++ language memory. The exact algorithm required the declaration of three dimensional array related to variables nA, nB 

and Q. Thus the 20 problem instance required the declaration of three dimensional array with 1,978,800 (i.e., 20x20x4947) 

memory allocation. Solving bigger than 20 job problem required more memory allocations and thus we could not solve 

the bigger problem.            

Table 2. Computational results for Heuristic 1 and Heuristic 2 for bigger data set.  

nA nB  
Heuristic 1 Heuristic 2 

Min 

Q ABS RPD ABS RPD 

30 30 11868 11251 18.51 9494 0 9494 

40 40 21577 16973 20.71 14061 0 14061 

50 50 31319 28502 22.06 23351 0 23351 

60 60 39014 43119 21.09 35609 0 35609 

70 70 54705 55948 18.29 47297 0 47297 

80 80 78752 66074 17.19 56383 0 56383 

90 90 95990 79995 19.83 66756 0 66756 

100 100 117798 97539 17.53 82994 0 82994 

110 110 125491 113981 19.39 95473 0 95473 

120 120 163974 134604 19.93 112234 0 112234 

130 130 191333 159876 18.71 134675 0 134675 

140 140 230591 160097 24.38 128711 0 128711 

150 150 240405 202047 22.10 165479 0 165479 

Average 90000.46 19.98 74809 0 
 

 

Table 2 shows the relative performance of proposed heuristics and compares the performance of proposed heuristic 

internally. We do not report optimal solutions in table 2, because exact algorithm could not solve more than 20 jobs problem 

instances. The table 2 shows that the performance of Heuristic 1 is poor with 19.98% RPD value while the result of 

Heuristic 2 is better than the result of the Heuristic 1 under all of situations. Heuristic 2 fully exploits the property of the 

total completion time objective function for single machine scheduling problem. In heuristic2, we not only considered the 
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job sorting in their own job agent, but also considered utilizing the SPT rule in the job schedule work too, which means 

that we sort all jobs together according to the SPT rule first and following by two-step adjustment. The first adjustment 

aims at ensuring the sequence feasible and the second step aims at minimizing the total completion time of first agent. 

To sum up, heuristic 2 is a good heuristic for this scheduling problem according to the statistical data from two tables 

above. It is clear from tables 1 that the heuristic 2 is almost 19.95 % (i.e., 21.30 – 1.35) better than the performance of 

heuristic 1 in terms of optimal gap between heuristic and optimal solution. It is also evident from tables 1 and 2 that 

heuristic 2 has performed better that heuristic 1 in all problem instances. The way of sorting the jobs in agent B plays a 

vital role in solving this scheduling problem. We considered the jobs in agent B as a single job in Heuristic 1. However, 

we separated B jobs in Heuristic 2 and scheduled them to different positions of sequence. Moreover, we had a further 

adjustment after the primary sorting work. 

Conclusions 

We consider a single machine scheduling problem with two competing agents. The objective is to minimize the total 

completion time of the jobs from first agent subject to an upper bound on the total completion time of jobs from the second 

agent. We proposed two heuristics to solve this problem. These heuristics are based on the shortest processing time first 

rule of single machine scheduling. According to final results and comparisons between two heuristics, the performance of 

heuristic 2 is found to be better than the performance of heuristic 1. The numerical results for small data set showed that 

the heuristic 2 is only 1.35% away from the optimal solution. This result indicates the superiority of heuristic 2. 
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