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Abstract. In this paper, we describe how to estimate time-sliced origin-destination (OD) matrices 
for passengers in a public transport network based on counts of ICT (Intelligent Communication 
Technology) devices carried by passengers at equipped transit-stops. The transit assignment 

framework is based on optimal strategy, which determines the subset of paths related to the optimal 
strategies between all OD pairs for the whole horizon of study. Details are provided on how to 
build the involved equations in a linear Kalman filtering model formulation, which is defined by 
the authors for a toy network that is proposed to validate the approach. 
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Introduction 

The estimation of dynamic OD passenger matrices has received little attention in the 

literature due to the difficulties in collecting real-time passenger data. However, new 

technologies have generated proposals for automated passenger count (APC) and Automated 

Data Collection System (ADCS) applications to be used in transport planning, with a 

focus on the transit Origin-Destination inference. However, OD matrices are not yet directly 

observable; consequently, it has been natural to resort to indirect estimation methods. 

Wong and Tong (1998) proposed a maximum entropy estimator that employs the 

schedule-based approach for dynamic transit assignment. Ren (2007) proposed a generalized 

least squares bilivel approach for estimating time-dependent passenger matrices in congested 

schedule-based transit networks that have automatic passenger counts (APC) and prior 
OD matrices. The proposal was tested in a toy network, but no recent works from the 

author have confirmed either offline or online applicability to large scale transit networks. 

Kostakos et al (2010) proposed the use of passengers’ Bluetooth mobile devices to derive 

passenger OD matrices in a simplified context.  
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Our aim is to explore the possibility of making use of this new data to estimate real-time 

dynamic Origin/Destination matrices of passengers in a transit network, using a sample 

of equipped passengers provided by data collected from antennas located in a subset of 

transit stops.  

The remainder of this paper is structured as follows. Firstly, we describe the formulation 

for estimating passenger matrices in public transport. Next, the approach is tested and 

validated on a toy network. And finally, the conclusions are stated. 

Model Formulation 

Notation is defined in Table 1. Some aspects of the data model and formulation statement 

that have to be considered are: 

 The demand matrix for the period of study is assumed to be divided into several 

time-slices, accounting for different proportions of the total number of passengers 

in the time horizon. 

 The approach assumes an extended space state variable for M+1 sequential time 

intervals of equal length t (between 5 and 10 minutes for transit matrices), in order 
to consider non-instantaneous travel times. M should guarantee traversing the 

network. 

 Bluetooth antennas are ICT sensors assumed to be located at (some) transit-stops. 

 OD paths involved in optimal strategies for transit trips in the period of study can 

be computed by any transportation planning software that includes a strategy-based 

equilibrium transit assignment for historic demand. We do not have a strategy-based 

dynamic transit assignment tool available because we faced a delay in the development; 

so we have used EMME4 (2013) to define state-variables in our tests. To map the 

OD paths involved in optimal strategies, we used the EMME output to build input 

files of the MatLab data model, to systematically program in python those paths 

involved in optimal strategies from centroid i to j and which pass through a pair 

(r,s) of ICT sensors. 

Table 1. Definition of model variables 

 kQi

~
, 

 kqi
~

 : 

Historic total number of passengers and ICT equipped  
passengers accessing a transit unit at any stop inside the  

transportation area modeled by centroid i at time interval k. 

 kQi ,  kqi  : 

Total number of passengers and BT equipped passengers  

accessing a transit unit at any stop inside the transportation area 

modeled by centroid i at time interval k. 

 kyq
~

, 
 kyq  : 

Historic and actual number of equipped passengers crossing ICT 

sensor q or s from the pair of sensors (r,s)=q at time interval k 

 kGije , 
 kGije

~

 kgije ,
 kgije

~
 

: 

Total number of current  kGije
 and historic  kGije

~  passengers as 

well as current  kgije
 and historic  kgije

~  equipped passengers  

accessing centroid i at time interval k  and headed  towards  j  

using path e. 
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 kgije
 : 

State variables are deviates of equipped passengers accessing 

centroid i during interval k and headed towards centroid j using 

path e, with respect to historic data      kgkgkg ijeijeije
~ . 

 kz ,  kz~  : 

The current and historic measurements of equipped passengers 

during interval k, a column vector of dimension Q, plus  

balance equations. 

 ku h

rs
 : 

Fraction of equipped passengers that require h time intervals to 
reach ICT sensor in transit stop s at time interval k from ICT 

sensor r. Time-varying model parameters. The values of  kuh

rs
 

are updated according to the measurements of the ICT sensors 

 kuh

rsije,
 : 

Fraction of equipped passengers detected at interval k whose trip 

from centroid i to sensor s from sensor r  might use the OD path 

e and that last h time intervals of length t, Mh 1 . 

 ktrs
 : 

Average measured travel time for equipped passengers  

captured by the pair of  ICT sensors  (r,s) crossing sensor s  

during interval k 

 

The total number of origin centroids (related to transportation zones) is I, identified 

by index i, from 1 to I; the total number of ICT sensors is P and the considered pairs of 

ICT sensors (r,s) is Q, where P ICT sensors are located either at bus-stops or at segments in 

the inner network; and the total number of paths (K) corresponding to optimal (static) 

transit strategies from the historic OD transit matrix for the period of study. Each 

equipped transit stop could be considered either an origin or a destination, and it models 
a transit-stop that might be shared by several transit lines; but we prefer to estimate OD 

transit trips between OD pairs, not between transit-stops.  

The state variables gije(k)
 
are assumed to be stochastic in nature. An autoregressive 

model of order r <<M is used to relate OD path flow deviations at the current time k to 

the OD path flow deviations of previous time intervals. The state equations are: 

       ,
1

k1wkw1k
r

w

wΔgDΔg  


     (1) 

where w(k) has zero mean with a diagonal covariance matrix 
kW , and  wD  are  transition 

matrices which describe the effects of previous OD flows gije(k-w+1) on current flows 

gije(k+1) for w = 1,…,r . If no convergence problems are detected, we assume simple 

random walks in our research in order to provide the most flexible framework for state 

variables. Thus, our first trial will be r=1 and the  wD  matrix becomes the identity matrix.  
The relationship between the state variables and the measurements involves time-varying 

model parameters (congestion–dependent, since they are updated from sample travel 

times provided by equipped passengers). This is applied using a linear transformation 

that considers: 
 

 The number of equipped passengers first detected in an equipped transit-stop r 

(linked/related to one or more origin zones i) during time intervals in k ,..., k-M,  kqr . 

 H<M time-varying model parameters in the form of fraction matrices   kuh

rsije,
.  
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 The H adaptive fractions that approximate the travel time distribution between the 

pair of ICT sensors (r,s) notated as
h

rsu and that extend to
h

rsijeu , . These are updated 

from travel time measures provided by ICT sensors.  

 
At time interval k, the values of the observations are determined by those of the state 

variables at time intervals k, k-1, …, k-M: 

  ,)v()g()F(Δz kkkk       (2) 

where )kv(  is white Gaussian noise with covariance matrix
kR . )F(k  maps the state 

vector )g(k
 
onto the current blocks of measurements at time interval k: counts of 

equipped passengers between a pair of ICT sensors, accounting for time lags and congestion 

effects and balances for origin zone preservation flow, if available (for example, one 

origin zone identified as the only source of passengers for a transit stop). The solution 

should provide estimations of the OD passenger matrices between OD pairs for each 

time interval up to the k-th interval once observations of ICT equipped passengers at the 

bus-stops equipped with wifi antennas up to the k-th interval are available.  
KF prediction of OD trips for ICT-equipped passengers up to some intervals ahead 

has to be considered and expanded according to historic profiles (for day-type and 

time-period), in order to feed a dynamic transit assignment tool that will provide the 

forecasted transit line loads, boardings/alightings at transit-stops in the short-term future. 

Here, we consider a 30 min forecasting horizon. 

Description of the Test Network 

The formulation to be detailed has been programmed as a MatLab prototype (named 

KFX3T). Proper coding has been verified with a toy network presented in Fig. 1. 

The OD matrix consists of four non-zero OD transit flows (1,8), (1,9), (2,8) and (2,9) 

(identified as 1 to 4). ICT sensors are assumed to be available at nodes 3, 4, 5 and 7 
(sensor IDs are, respectively, 1 to 4). Transit lines are L1 to L4: L1 from 3 to 6, L2 from 

3 to 7, L3 from 4 to 6 and L4 from 4 to 7,. Headway for lines L1 and L4 is 15 min and 

otherwise set to 10 min. Flow is distributed at origins using a logit model with scale pa-

rameter 0.2.  Travel speed for all lines is 20km/h and boarding time is neglected to sim-

plify the description of the example. Half headway for each line is incorporated into ex-

perienced travel times (travel impedance). In-vehicle travel times result in 10.8 min for 

segments on L1 and L4 and 7.5 min for each L2 and L3 segments. 

The set of OD paths that compose, according to EMME (2013), the optimal transit 

assignment strategies for the whole period of study are described in Table 2. Thus, the 

number of OD pairs is 4, the number of OD paths is 10 and there are 5 feasible pairs of 

equipped transit stop captures (r,s). We assume a subinterval of ∆t=5 min for a 1 hour 

horizon of study. 
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OD 8 9 

1 180 120 

2 60 180 

Fig. 1.Test network: link and node identifiers, ICT sensors (diamond nodes) and transit lines (L1 to L4) 

Table 2. Description of OD paths related to optimal strategies in transit assignment 

 

Table 3. Time-varying model parameters  ku h

rs
: proportion of passengers arriving at stop s at 

time k from stop r in h time intervals 

 

 

OD 

Path/ 

Optimal 

Estrategy OD path lines 

ODPath 

id in OD 

pair 

OD 

pair 

ICT 

id 

OD 

Path/ 

Optimal 

Estrategy 

OD path 

lines 

ODPath 

id in OD 

pair 

OD 

pair 

ICT 

id 

1/1 L1 1 1=(1,8) 1 6/3 L1 1 3=(2,8) 1 

2/1 L3 2 1=(1,8) 2,3 7/3 L3 2 3=(2,8) 2,3 

3/1 L4 3 1=(1,8) 2,4 8/3 L4 3 3=(2,8) 2,4 

4/2 L2 1 2=(1,9) 1,3,4 9/4 L2 1 4=(2,9) 1,3,4 

5/2 L4 2 2=(1,9) 2,4 10/4 L4 2 4=(2,9) 2,4 

 

 

Orig

in 

i (r,s) 

TT(r,s)(min)  

for k=
 

(ODpath id, 

ICT stop) 

 

'5

1..





t

kutsh h

rs

 

 

'5

0..





t

kutsh h

rs

 

 

'5

0..





t

kutsh h

rs

 

0 1 2 3 4 …  Any k k=0,1,2 k=4 k>>4 

1 [1,3] 7.5 7.5 7.5 12.5 12.5 12.5 (4,3) (9,3) 1 1, 2 2 

1 [1,4] 15 15 15 15 20 20 (4,4) (9,4) 2 2,3  3  

2 [2,3] 7.5 7.5 7.5 12.5 12.5 12.5 (2,3) (7,3) 1 1, 2  2  

2 [2,4] 10.8 10.8 10.8 10.8 18.3 18.3 

(3,4)(8,4) 

(5,4)(10,4) 2 2,3 3 

- [3,4] 7.5 7.5 7.5 7.5 7.5 7.5 (4,4) (9,4) 1 1   11

34 ku  1   11

34 ku  
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Model Building for the Test Network 

For each [r,s] pair of ICT sensors,  ku h

rs
 account for temporal dispersion of experienced 

travel times, and they are applied to all OD paths linking equipped transit stops (r,s). 

We also assume that the extended vector of states is the current one and that M, the 

number of ∆t subintervals, is set to M=5. Initially, deviates of the OD path flows are set 

equal to the historic OD path flows, and 100% of  equipped passengers is assumed for 

validation purposes; thus   00  ijeg . Time-varying model parameters  00h

rsu  at 

initialization are set according to segment line speeds (20km/h), and for k>0 they are 

defined as the average experienced travel impedances as indicated in Table 3. Then, if 

  100 
h

rsu  for h0 equal to 1, then that would mean the a priori travel time to get to stop s 

from r for all the passengers is one time subinterval, in the range (∆t,2∆t] minutes, or in 

other words between 5 and 10 min. 

Let g(k)
 
be a column containing state variables for intervals Mkkk  ,,1, 

of dimension (M+1)x10=(5+1)x10=60. The extended vector state has 60 components 

in the example and, for r =1, the state variable equations are defined as a random walk 

which can be expressed for the extended state vector as a shifting operator (Eq. 1) by 

setting D as a 60x60 matrix with non-null submatrix components I10 (identity matrix 

10x10). 























000

000

000

00

10

10

10

I

I

I

D




 
The time-varying linear operator relates state variables and current observations for 

time interval k in Equation (2). In the example,  kz  is a vector of dimension 

(Q+L)=5+1=6, since ICT sensors 1 and 2 (located at nodes 3 and 4) do not clearly identify 

each one of them as the natural receptor of either origin centroid 1 or 2. However, by 

adding up their captures, the total flow generated by origin zones 1 and 2 provides 1 

conservation flow equation. We refine the details of Eq. (2): 

 

  )v()g()F(Δg(k)
k)E

AU(k)
Δz

T

kkkk 




























(k)v

(k)v

( 2

1

  

(3)

 
 

A discretization of the travel-time distributions between pairs of equipped transit 

stops [r,s] (5 pairs) in H=2 bins is enough in this case (the first bin h0 is represented by 

a priori travel times). Then, if iC is the number of OD paths originating in the network 

at entry centroid i, for Ii ,,1 , then C1=5 and C2=5 in our case,  leading to the 

definition of one balance equation, through B and E(k) in Eq. (3) as: 
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,1111111111

21

00000BEB 















  CC

 
 

A matrix in Equation (3) is composed by appending identity matrices of dimension 5, 

M+1=6 times: 

 





















1M

QQ IIA  

 

and each )( hkU   for h=0,…,M models network structure and travel time delays in 

terms of fractions on travel time bins (time-varying model parameters affecting state 

variables whose OD subpaths are intercepted by some pairs of ICT-equipped transit 

stops (r,s) at s in interval k). Implementation guarantees that implicit structural restrictions 

are satisfied (see Equation 4): 
 

 

 

 

  kijesrku

Hhsrku

ksrku

Hhsrku
H

h

h

rsije

h

rsije

H

h

h

rs

h

rs













path  captured ),(1

1),,(0

),,(1

1),,(0

1

,

,

1



(4) 






















  




Q

h

rsije hku
hkU

)(
)( ,

  and 

 

 



















MkU

kU

00

00

00

U(k)

 
 

U(k)  is (1+M)10 x (1+M)Q=6*10x6*5=60x30. In the example )(, hkuh

rsije  >0 is 

the fraction of the equipped passengers that were detected at equipped transit stop r (h 

intervals before k) and who arrive at sensor s at k interval (this fraction applies to all 

captured OD paths). For k=1, we define submatrices 

 

            10x50 432101 UUUUUU  

 

in U(1) , since passengers that enter the system during subinterval k=1 cannot reach 

any equipped transit stop s from any detector at an equipped stop r (minimum time is 7.5 

min). We skip a transit by applying k=2,3, but once k=4 then all pairs (r,s) have already 

received experienced travel times from passengers, and approximations to travel time 

distributions are updated. For k=4, we have to average travel times in Table 3: 
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     

























































































































05.0000

0005.00

05.0000

00000

00000

05.0000

0005.00

05.0000

00000

00000

3

05.0000

0005.066.0

05.0000

0066.000

00000

05.0000

0005.066.0

05.0000

0066.000

00000

2

00000

100033.0

00000

0033.000

00000

00000

100033.0

00000

0033.000

00000

1 kUkUkU

















 
 

      10x50 54 kUkUkU  . 

 

And for k>>M, we would have (always referring to Table 3 travel times): 
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
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









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01000

00010

01000

00000

00000

01000

00010

01000

00000

00000
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00000

00001

00000

00100

00000

00000

00001

00000

00100

00000

2

00000
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00000

00000

00000
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00000
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1 kUkUkU

 
 

      10x50 54 kUkUkU  

 

And the right-hand side of Eq. (3) is fully described for the example. The left-hand 

side refers to deviates of counts for each pair (r,s) of ICT equipped transit stops (5 in the 

example), and for 1 conservation flow equation (last row) for all OD paths entering the 

system at interval k in Eq. (3). This concludes the model building details for the proposed 
formulation. 

The standard report files related to OD flows, nodes, links, etc. in the EMME (2013) 

model were fitted to worksheet formats (fixed column .csv files) directly or by using python 

scripting. Fixed column .csv data files are read by KFX3T model building procedures. 

The KFX3T internal data model is split into MAT files, which are loaded as needed into 

the program as: Global.mat, Tuning.mat, Graph.mat, Demand.mat, Measures.mat. 

Additionally, two extra MAT files have been included for internal use in order to simplify 

the access to some critical structures: AccDem.mat (OD pairs and OD paths) and 

AccMes.mat (OD paths captured by each defined sensor and pairs of ICT sensors). 
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Conclusions 

Model building for a KF formulation for estimating dynamic transit matrices, as proposed 
by the authors, has been detailed in a toy example. An EMME (2013) model for the test 

network was developed to feed the internal data model for the KFX3T prototype 

implemented in MATLAB. We developed a discrete event simulator to emulate passenger 

counts and travel times in the test network. KFX3T has been validated and convergence 

holds, but a fine tuning is needed. Sensibility to a priori OD flows per interval and co-

variance matrices for state variables and counts are being tested. Testing on medium-sized 

networks is the next step to be undertaken in the immediate future. 
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