
 

Lecture Notes in Management Science (2014) Vol. 6: 4–14 
6th International Conference on Applied Operational Research, Proceedings 
© Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca 

 
ISSN 2008-0050 (Print), ISSN 1927-0097 (Online) 

 

Approximated dynamic programming 

algorithms with variable neighbourhood 

search for reformed dynamic quadratic 

assignment problems  

 
Pongchanun Luangpaiboon 1, Sirirat Muenvanichakul 2 and Peerayuth Charnsethikul 2 

1 Industrial Statistics and Operational Research Unit (ISO-RU), Dept of Industrial Engineering, 

Faculty of Engineering, Thammasat University, Pathumthani, Thailand 
lpongch@engr.tu.ac.th 
 
2 Dept of Industrial Engineering, Faculty of Engineering, Kasersart University, Bangkok, Thailand 
sirirat.m@ku.ac.th 

Abstract. When determining the optimal solution of the dynamic quadratic assignment problem 
(DQAP) it is extremely difficult since it is the NP hard problem. The reformed dynamic quadratic 
assignment problem (RDQAP) has been reformulated and applied in two alternatives of linearised 

and logic-based models after proving the model equivalence. This study follows the former and 
introduces the hybridisation of the conventional dynamic programming algorithm with the meta-
heuristics of bee colony optimisation (ADPA-I) and simulated annealing (ADPA-II) algorithms 
called the approximated dynamic programming algorithms (ADPA).  In order to improve quality 
of solutions the variable neighbourhood search is also included with given initial solutions from 
the ADPA. In the context of ADPA, the searching procedures are incomplete as in the original 
DPA. For each period, a set of best solutions provided by metaheuristics is determined as the initial 
solution set. The number of all possible solutions is the product of initial solution set of all periods. 

Numerical results explain the superior quality of the ADPA-I obtained solutions when compared. 

Keywords: dynamic quadratic assignment problem; dynamic programming; bee colony optimisation; 
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Introduction 

The dynamic quadratic assignment problem (DQAP) is an extended version of the 

conventional quadratic assignment problem (QAP) proposed by Koopmans and Beckman 

(Lacksonen and Enscore, 1993). Because the business conditions such as new manufacturing 
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orders, new product lines and technological advances are constantly changing, the need 

of a dynamic nature is supported. There are a series of data in static problem with its 

own from-to flow matrix for given finite discrete time periods. They depend on the nature of 

the business, a period can be given in terms of months, quarters, years, etc. An additional 

rearrangement cost term in the objective function ties the static problems together 

whenever an area contains different department in consecutive time period or moving a 

specific department from its location. Rearrangement cost also include all the costs involved 
in a facilities project, including planning, removal, disposal, construction, installation, 

communication and utilities costs. If rearrangement costs are performed on off-shifts or 

weekends, wage premiums must be used to determine costs. One must also consider either 

the lost production costs or overtime costs to make up production on off-shifts. DQAP 

is a mathematical model for a specific problem and its aim is to search for the optimal 

location assignment among a set of facilities over a discrete time periods. During this 

time, many of the parameters of the problem such as demands and distribution costs are 

likely to be changeable. The objective is to minimise the total of flow and rearrangement 

costs over all discrete time periods. The application of this problem is necessary not only for 

the design of new facilities, but for the redesign of existing facilities due to introduction 

of new products, the installation of the new equipment or process, or realisation of an 
increase or decrease in throughput volume as well.  

The DQAP model is powerful with a wide range of potential real world applications. 

Applications of the DQAP include the assignment of warehouses or indivisible operations to 

a number of geographical sites, facility layout, the layout of indicators and control panel, 

partitioning, assigning storage space on computer disc storage devices, sequencing work 

through a production facility and so on. Both metaheuristic and optimisation algorithms 

have been applied to determine the optimal alternatives. However, the potential of these 

applications depends on the existence of computationally feasible and efficient solution 

procedures. They are often measured by the functional dependence of execution time on 

each problem size. Since the DQAP is NP-hard problem that is difficult to approach the 

optimum. Mathematically, the DQAP was later formulated as a reformed DQAP with 

two alternatives of linearised and logic-based models. This study follows the former and 
its mathematical model is followed. 
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where, 

N  = the number of facilities or locations in the t time period  

T  = the number of discrete time periods

 

ijkltC

 

= the cost of assigning the i facility to the j location and the k facility to the l 

location at the t time period, and 
ijklt ikt jltC f d

 

iktf   = the workflow cost from the i facility to the k facility in the t time period  

jltd  = the distance from the j location to the l location at the t time period  

ijltR   = the rearranging cost when the i facility located on the j location at the t time 

period is moved to the l location at the (t+1) time period 

 

ijtX   = the decision variable of 1or 0 if the i facility is assigned to the l location at 

the t time period or 0 otherwise 

ijkltY
 

=
ijt kltX X        (8) 

ijl(t 1)M 
 =

ijt il(t 1)X X 
       (9) 

The objective of this paper is to investigate how the choice of the approximated dynamic 

programming algorithms based on the bee colony optimisation and simulated annealing 

algorithms perform on the reformed DQAP when parameter levels are optimised. The 

numerical comparisons are limited to some selected problem sizes in the literatures. This 

paper is organised as follows. Section 2 describes the approximated dynamic programming 
algorithms. Sections 3 and 4 illustrate computational results and analyses for comparing 

the performance of the proposed methods and conclusions, respectively.  

Approximated Dynamic Programming Algorithms (ADPA)   

In the fundamental paper on the dynamic facility layout problem, Rosenblatt proposed a 

dynamic programming to develop an optimal solution. With T time periods or stages the 

maximal number of solutions or states is (N!)T; where N is the number of departments or 

locations. When considering all number of process layout combinations it is extremely 

time consuming. This problem is then simplified by applying only possible combinations 

in each period. Obviously, the recursive formulation is developed and the total cost for 

each of the layouts considered in the horizon is established by the following recursive 

relationship: 

 

Ltq* = Min {Lt – 1, r* + R rq} + Ftq ;      (10) 

 

where, 

Ltq*  = minimal cost to reach the q layout at the t time period  

r      = process layouts (states) for each time period 

Rrq   = rearrangement cost from the r layout to the q layout  

Ftq     = flow cost of the q layout in the t time period  
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Fig. 1. Approximated dynamic programming framework (Muenvanichakul and Charnsethikul, 2010). 

With Rosenblatt’s dynamic programming algorithm, the discrete time period and the 

particular layout arrangement correspond to the stage and the state, respectively. Therefore, 

there are N! states in each of the T stages. Restricting the state space of the algorithm was 

determined that any layout arrangement for a given period does not need to be considered. 

If the difference between the total cost of the arrangement and the cost of optimal static 

solution for that period is larger than the difference between the levels of the upper and 

lower bounds of the algorithm. Therefore, only the best static solutions for each period 

need to be considered. For small problems, this algorithm provides the optimal solutions but 

for very large problems, exploring all possible solutions in each period needs the capability 
software and hardware used to solve the problem. Let N’ is the applicable number of the 

static assigning layouts in each period. The main concept of this ADPA is it will pro-

vide the optimal solution for the layouts included in its procedure (Figure 1). However, 

when N’ < N! , it then cannot guarantee the optimum since there are not all the possible 

static layouts included in the procedure. Concerning the powerful selecting the best N’ 

layouts in each period via metaheuristics, the best so far solutions should finally lead to 

better solutions (Dunker et al, 2005; Urban, 1993). There were some literatures to apply single 

method alone of metaheuristics such as genetic, tabu search and simulated annealing 

algorithms by the same set of initial layouts (Muenvanichakul and Charnsethikul, 2010). 
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ADPA with Bee Colony Optimisation (ADPA-I) 

Bee colony optimisation algorithm (BCO) is integrated to the ADPA for selecting the 

best so far alternatives in each time period. BCO mimics the behaviour of the bees when 

finding the nectar. The searching strategy is operated through the bees which are divided 

into two classes of scout bees and employee bees (Karaboga and Basturk, 2007a and 
Karaboga and Basturk, 2007b). Nectar sources are assumed to be the solutions. Scout 

bees randomly search for the nectar in the range of possible solutions of their search 

space. When scout bees find the solutions, they fly back to their hive and communicate 

with other bees. Via the use of dance styles bees communicate to tell the amount of nectar 

and the direction of that nectar. Employee bees then carry the nectar in a nectar source 

and vary the amount of nectar and the distance. Algorithmic procedures of the BCO are 

given as follow. Firstly, the n number of scout bees is set to determine the initial solutions. 

Each solution from scout bees is evaluated and all solutions are sorted in descending order. 

The m best sites from best sites are chosen. These best sites are separated into two groups. 

The first group is the e best sites which are in the top and the other group is the m-e 

remaining sites. The BCO conducts searches in the nep and nsp neighbourhood sites of 
the e best bees and of the other selected bees, respectively (Karaboga and Basturk, 

2008). For each site only the bee with the highest fitness will be selected to form the 

next m bee population. Randomly assign remaining bees to meet the n number of scout 

bees and repeat iterative processes until the stopping criterion is met.  

ADPA with Simulated Annealing Algorithm (ADPA-II) 

Simulated annealing algorithm (SA) is also integrated to the ADPA for selecting the 
best so far alternatives in each time period. It has been derived from an interesting analogy 

between problems in statistical mechanics and multivariate or combinatorial optimisation 

(Kirkpatrick et al., 1983). This algorithm is a set of rules for searching large solution 

spaces in a manner that mimics the annealing process of metals. The algorithm simulates the 

behaviour of an ensemble of atoms in equilibrium at a given finite temperature and its 

original framework can be traced to Metropolis and the team (Granville et al., 1994). 

This algorithm has been regularly used in global function optimisation and statistical 

applications. In case of maximisation the procedures of this algorithm start at a correspond-

ing initial value of the objective function. The new objective value, y1, will be then deter-

mined. The new solution will be unconditionally accepted if its objective value is improved 

and the process regularly continues. Otherwise the difference or size of increment in 
objective values is calculated and with an auxiliary experiment the new solution would 

be accepted with probability. A random number is generated from the uniform distribution 

on (0, 1) and is compared to reject or accept the new solution. This stochastic element is 

from Monte Carlo sampling. It occasionally allows the algorithm to accept the new solution 

to the problems, which deteriorate rather than improve the objective function value. 

However, Simulated Annealing includes a number of parameters and they have been 

claimed that affect the efficiency of the algorithm. 
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Computational Results and Analyses 

In this work, for the computational procedures described above a computer simulation 

program was implemented in a C# language program. A computer with processor Intel core 

i5, CPU 2.3GHz, and Ram 4 GB was used for computational experiments. A comparison of 

the hybridisations of the ADPA-I and ADPA-II are stated to determine their advantages 

and disadvantages in the applications on the linearised DQAP. A set of initial layouts 
are provided by the metaheuristic algorithms of bee colony optimisation and simulated 

annealing. These will be used as possible alternatives of solution in each time period before 

applying the iterative procedures from the DPA itself. Additionally, searching the best 

so far (BSF) neighbourhoods is also applied to systematically exploit the idea of 

neighbourhood change within a local search method to approach a better solution. It 

proceeds by a descent method to a local minimum. In each time, a local search routine 

for optimisation repeatedly proceeds by performing a sequence of local changes of one 

or several solutions within the current neighbourhood in an initial solution (Mladenovic 

and Hansen, 1997). This searching procedure, without forbidden moves, escapes from 

the current solution to a new one if and only if an improvement has been achieved. That 

is, it will be used to enhance the current solution via its neighbourhood until no further 
improvements are found or a local optimum is reached (Figure 2). Considering the plant 

layout example with twenty facilities, the facilities are assumed to be equal size. In this 

paper, the preliminary study was conducted by applying the steepest descent algorithm 

(SDA) to determine the proper levels of BCO and SA parameters on the small size of 

the linearised DQAP with N and T of 20 and 2, respectively. Based on SDA, if P-value 

exceeds the 5% preset value of significance level (α), there is no effect of parameters. 

The significant parameters of the BCO (Figure 3) and SA are applied to both ADPA-I 

and ADPA-II. Additionally, the number of solutions for all iterations from the BCO 

(nxi) will be applied to the SA throughout. 

There are six problem sizes of the reformed DQAP which consist of (N = 5, T = 5), 

(N = 5, T = 8), (N = 6, T = 5), (N = 6, T = 8), (N = 40, T = 3) and (N = 20, T = 5) when N 

represents the facilities or locations and T represents time periods. Experimental results 
in each run will show the effectiveness of the algorithms in terms of the mean, standard 

deviation (Stdev) and the best so far (BSF) of the total cost levels. There are fifty replicates 

in each case. When ADPA-I and ADPA-II with the preset number of states (N’) excluding 

repeating layouts were applied to small problems of (N = 5, T = 5), (N = 5, T = 8), (N = 

6, T = 5) and (N = 6, T = 8) it can be concluded that ADPA-II provided the slightly low-

er levels of total cost on average (Table 1). However, other performance measures of 

the sample standard deviation and BSF were not different, when compared. For solving 

selected problems of (N = 40, T = 3) and (N = 20, T = 5) by both ADPA-I and ADPA-II 

with the preset number of states (N’) excluding repeating layouts, it is found that 

ADPA-I is capable to provide the better solutions than ADPA-II based on the lower levels 

of sample mean and standard deviation of total cost including the BSF (Table 2). However, 
there is no statistically significant (Figure 4). Additionally, when considering for the 

whole process the average execution time of the computational runs using ADPA-I was 

approximately 57.25 minutes whilst 43.29 minutes was averagely taken by ADPA-II. 

On the other hand, ADPA-II is able to obtain the best so far solutions (Table 2). 
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Fig. 2. The structure of ADPA-I and ADPA-II 
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Fig. 3. Normal probability plot of effects on the BCO parameters. 

Table 1. Numerical results of ADPA-I and ADPA-II on the small problems 

Location 
Time 

Period 

Total Cost 

ADPA-I ADPA-II 

N T Mean Stdev BSF Mean Stdev BSF 

5 5 184,667 5,260 176,028 184,245 3,897 179,157 

5 8 302,350 11,573 284,409 294,857 11,010 283,769 

6 5 302,147 12,059 285,070 295,021 11,597 286,869 

6 8 498,981 22,224 465,084 481,637 26,114 461,882 

Table 2. Numerical results of ADPA-I and ADPA-II on the BIG problems 

Location 
Time 

Period 

Total Cost 

ADPA-I ADPA-II 

N T Mean Stdev BSF Mean Stdev BSF 

20 5 4,428,337 104,025.9698 4,361,570 4,488,956 140,105.734 4,256,480 

40 3 11,047,043 252,518.0338 10,854,672 11,205,815 255,079.8743 10,761,358 
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Two-sample T for ADPA-I vs ADPA-II 

 N Mean StDev SE Mean 

ADPA-I 5 11047043 252518 112929 

ADPA-II 5 11205815 255080 114075 

Difference = mu (ADPA-I) - mu (ADPA-II) 

Estimate for difference:  -158772; 95% CI for difference:  (-538338, 220794) 

T-Test of difference = 0 (vs not =): T-Value = -0.99; P-Value = 0.356 DF = 7 

Fig. 4. Statistical test and the Box-Whisker plot for the problem size of (N = 40, T = 3). 

Conclusions 

The reformed dynamic quadratic assignment problem that incorporates any changes of 

known future data into the linearised problem gains many benefit. They consist of the 
reduction of the indirect costs-flow and rearrangement costs over all discrete time periods 

and an improvement of closeness ratings and productivity when compared to the traditional 

or static problem. The existing algorithm of dynamic programming is approximated by 

the artificial intelligence algorithms including the neighbourhood search around the best 

so far solutions. An aim is to find the near optimal solutions within reasonable execution 

time. Those metaheuristics are the bee colony optimisation and simulated annealing 

algorithms. The first is the biologically-based inspiration with the initialisation of a population 

of solutions. The second is the physically-based inspiration with the initialisation of 

individual. However, the performance of both algorithms depends on their parameter 

levels and need to be determined and analysed before its implementation. All parameters are 

determined through the steepest descent algorithm based on the statistically significant 
regression analysis. Experimental results were analysed in terms of best solutions found 

so far, mean and standard deviation on both the total cost and execution time to converge to 

the optimum. Recommended level settings of parameters were applied for all selected 
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problem sizes that can be used as a guideline for future applications. This is to promote 

ease of use of the metaheuristics in real life problems. From the numerical results on the 

small problems, the approximated dynamic programming algorithms based on the initial 

solutions from simulated annealing algorithm performed better on average. However, 

when the problem sizes were increased the ADPA-I based on the bee colony optimisation 

algorithm were superior, on average.  

The best so far solutions from the ADPA-II approached the optimum closer when 
compared. There also were several hybrid techniques to develop a better solution by 

starting with the best solution from one method, and then uses it as an initial solution for 

others. However, the quality measures were not improved significantly. Finally, various 

experimental designs can be modified by using replicated orthogonal array or fractional 

factorial design for improving parameter levels that are related to quality of solutions in 

each problem instead of using only the recommended parameter levels from the sample 

problem throughout. It is also interesting to investigate the behaviour of other metaheuristic 

algorithms in these tested problems. Hence, the numerical results focused on the quality 

of total cost merely. Further research could consider more on the computation time in 

forms of the desirability function of dual responses. These requirements can be modified 

to make it better suited to practical applications. 
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