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Abstract. This paper presents a generalization of the well-known vehicle routing problem 
with time windows (VRPTW). In the proposed selective multi-compartment VRPTW 
(SMCVRPTW) a limited number k of identic vehicles is available at a central depot to 
serve a set of customers. Each vehicle is equipped with m compartments of limited capacity 

which are dedicated to transport a particular type of a product. Each customer has a nonnegative 
demand for up to m products. Once a vehicle delivers a product p to a customer it collects a 
profit. A vehicle can visit a customer only within a given time window. The SMCVRPTW 
consist of determining a set of at most k routes starting and ending at the depot, satisfying 
all customer requests under capacity and time windows constraints such that the total collected 
profit is maximized. We present a variable neighborhood search algorithm to address the 
problem. The solution method is evaluated on standard VRPTW benchmarks enhanced 
with compartments and profit values. 
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Introduction 

The selective multi-compartment vehicle routing problem with time windows 

(SMCVRPTW) generalizes the multi-compartment vehicle routing problem 
(MCVRP). In the MCVRP, each customer requires the delivery of a nonnegative 

quantity of product    . Products cannot be transported together in one room 

due to different characteristics. For example refrigerated and freezing compartments 
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are necessary for the delivery of groceries into convenience stores.  The customer 

requests are satisfied either by multiple vehicle visits (each product is delivered 

separately) or vehicles with multiple compartments can be used instead. The latter 

situation is modeled by the MCVRP. The problem consists of determining a set of 

routes visiting customers such that all customer requests are fully satisfied at minimal 

travel cost under vehicle compartments capacity constraints. Most studies of the 

MCVRP concern the fuel distribution, e.g. (Brown and Graves, 1981), (Brown et 

al., 1987), (Avella et al., 2004). Among other practical applications of the MCVRP 
is the delivery of groceries to convenience stores (Chajakis and Guignard, 2003), 

distribution of cattle food to farms (Fallahi et al., 2008) or waste collection 

(Muyldermans and Pang, 2010). 

The SMCVRPTW extends the MCVRP. First, each customer can be visited only 

within a given time window, which is a common additional constraint in various 

routing problems (e.g. vehicle routing problem with time windows (VRPTW)). 

Second, a fleet of limited number of vehicles is available at the depot. This constraint 

implies that some customer requests might remain unsatisfied. Hence the decision 

problem also involves the selection of a subset of requests that are satisfied. Such 

a decision criterion can be implemented by assigning a positive profit to each request. 

Once a request is satisfied, the corresponding profit is collected. The problem can 

be viewed as a bi-objective optimization problem with one objective maximizing 
the collected profit and the second objective minimizing the traveled distance. 

Apart from the pure bi-objective approach, which is out of the scope of this paper, 

the two objectives are usually handled in three different ways. The first possibility 

is to maximize the total profit and impose a limit on the maximum route travel 

cost. The second way is the opposite: minimize the traveled distance under a minimum 

collected profit constraint. In the third possible formulation, both objectives are 

present in the objective function. The task is then to maximize the total profit minus 

the total traveled distance. Each of the formulations constitutes a particular family 

of routing problems with profits. The corresponding terminology is not unified and 

similar problems appear under different names in the literature. A classification of 

traveling salesman problems with profits was provided by (Feillet et al., 2001). 
Among recent papers dealing with selective routing problems can be mentioned 

for example (Valle et al., 2009), (Valle et al., 2011) or (Aras et al., 2011). The first 

two papers study the Selective Vehicle Routing Problem (SVRP) in which the 

length of the longest route is to be minimized. The third paper deals with selective 

multi-depot vehicle routing problem with pricing. The problem models a real-life 

reverse logistics case. The objective is to maximize the profit minus the cost associated 

with each collection. 

The SMCVRPTW presented in this paper is motivated by the following real-life 

application. Consider the case of the delivery of groceries to convenience stores. 

The deliveries must be quite frequent since the available stock is rather low. 

Simultaneously, each supply meets several limitations. The unloading is usually 
done on the pavement in front of the store and it affects the store's operation. As 

well parking capacities in urban areas are restricted and a situation when multiple 

vehicles arrive at the same time can be troublesome. Vehicles equipped with multiple 

compartments suitable to transport all required kinds of goods can reduce the 
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number of visits to a customer. Furthermore, imagine the case when only a limited 

number of such vehicles is available. The interest of the distributor would be then 

to maximize the number of satisfied requests at minimum travel cost. This is the 

case modeled by the proposed SMCVRPTW. 

The problem is NP-hard since it generalizes the vehicle routing problem. Exact 

algorithms can be used only to problems of a moderate size. Hence this paper focuses 

on a metaheuristic approach to address the problem. 

The paper presents a first study on the SMCVRPTW. The next section formulates 
the problem. Then a metaheuristic approach based on the variable neighborhood 

search is presented. Preliminary results and conclusion encloses the paper. 

Problem formulation 

The SMCVRPTW is defined on a complete undirected graph G(V,E), in which 

            represents the set of nodes and E the set of edges. The node 0 

represents the depot. Each customer           requires the delivery of nonnegative 

quantity     of product     . We call the pair       the request in the sequel. 

The delivery must take place only within a given time window        . Earlier arrival 

results into a waiting time of the vehicle while later arrival is forbidden. Each 

required product must be delivered on a single vehicle to the customer; however 

different products for the same customer can be loaded into different routes. Once 

product p is delivered to customer i, profit       is collected. We define 

            the total profit of customer i. Given a solution s we also define 

     as the total profit collected in s.  A fleet of m identic vehicles is available at 

the depot. Vehicles are equipped with       compartments with limited capacity 

  . Nonnegative travel cost     and nonnegative travel time     is associated with 

each edge         . It is assumed that both sets of values satisfy the triangle 

inequality. The aim is to determine a set of at most m vehicle routes serving a subset 

of customer requests such that the total profit is maximized and the total traveled 

distance (with respect to     ) is minimized. Given two solutions s1 and s2, we 

say that s1 dominates s2 (     ) if             or             and the total 

travel cost            . 

Initial solution heuristic 

A simple insertion heuristic is used to initialize the solution. In the first step, m 

routes are built with the m most profitable customers (according to   ). If    is 

identic for more customers, the travel cost is considered as the decision criterion 

guiding the selection. The solution is completed with further customer requests as 

follows. For each customer node i, let    denote the set of customer nodes reachable 

from i in terms of time windows. Let         be the number of elements in   . 

Furthermore, let   denote the subset of customers that are not inserted in any 
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route yet. In an iteration, each feasible insertion of customer     in a route 

between nodes      and      is evaluated according to the ratio       

  

   
. 

The term                    measures the possible time spent when visiting 

customer  . Note that    is the waiting time at   when arriving from  . The customer 

with maximum ratio is selected and the insertion is performed. In this step, the 

insertion involves all products demanded by the inserted customer and thus the total 

profit of the customer is collected. The procedure is repeated until no feasible 

insertion can be found further. The insertion selection based on the ratio     aims to 

find a reasonable tradeoff between the total customer’s profit    and its connectivity. 

The term    encourages customers having more reachable neighbors, while     

tries to favor customers whose insertion consumes less time. The insertion heuristic 

achieved better results on average when the ratio     was used compared to a simple 

maximization of the inserted profit. 
 

 

Variable neighborhood search solution approach 

Variable neighborhood search (VNS) is a metaheuristic framework proposed by 

(Mladenovic and Hansen, 1997). Its principle idea is to dynamically change 

neighborhood when a local optimum is reached. The VNS consists of a local 

search mechanism, a set of different neighborhoods and a set of rules defining the 

use and the selection of neighborhoods according to search results. In the present 

implementation of the VNS, the set of neighborhoods                  of a 

solution   is defined as the set of all solutions that can be obtained by removing a 

sequence of   consecutive nodes from  . The search starts with    . Given an 

Input: An instance of the SMCVRPTW. 

Output: A feasible solution x* maximizing  

the total collected profit. 

x* ← InitialHeuristic() 

k ← 1 

i ← 0 

ni ← 0 

while (i < i_max) and (ni < ni_max) do:  

 x’ ← RandomRemove(k) 

 x’’ ← LocalSearch() 

 if (x’’   x*): 
  x* ← x’’ 

  k ← 1 

  ni ← 0 

 else: 

k ← min(k+1,kmax) 

ni ← ni + 1 

 i ← i+1 
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incumbent solution   ,   consecutive nodes are removed at random from each 

route of    . Let    be the solution obtained from   . The local search, applied to 

  , tries to refill the routes in    with yet unsatisfied requests maximizing the collected 

profit. If the resulting solution     dominates   , the search continues with     as 

the incumbent solution (         and    . If not, the neighborhood is enlarged 

by setting                 and the search restarts with   unchanged. The 

steps of the VNS are depicted in Algorithm 1. The algorithm stops when either the 

maximum number i_max of iterations is encountered or ni_max iterations without 

improvement of the incumbent solution are performed. 

The main focus of the local search mechanism is to find a solution with the 

maximum total profit in the current neighborhood. A secondary objective is to 

minimize the traveled distance. The implemented local search thus disposes of two 

subsets of operators, each enabling to handle one objective. The first subset consists 

of common routing moves: 

 

a) 2-opt – replaces two edges in a single tour and inverts a subsequence of nodes, 

b) 2-opt* – swaps two sub-paths between two routes, 

c) Relocate – relocates a subsequence of nodes, 

d) Swap – swaps two subsequences of nodes. 

 

Note that 2-opt operates only on a single route while 2-opt* makes the exchange 

of two sub-paths between two distinct routes. Relocate and Swap can operate either 

on a single route or on a pair of routes. Inter-route operations b) – d) are evaluated 

in this order and the first improvement is performed. When a route is modified, it 
is checked for further improvements with 2-opt and the single route Relocate and 

Swap. Moreover, these two operators can explore different neighborhoods defined 

by the number   of consecutive nodes that are displaced at one time. Both imple-

mentations of Relocate and Swap are initialized with    . If an improving move 

is determined, the current solution is modified and the search continues by exploring 

another routing move in the sequel. If not, Relocate or Swap is further explored 

with                 .  

The second subset of operators enables the insertion of requests which are not 

satisfied in the current solution. Given a route   and a parameter   , the operator 

consists of a removal of    consecutive nodes from   and its replacement with a 

new sequence of requests. Note that when a node is removed from a route then the 

entire quantity of each delivered product is removed altogether. Contrarily, the 

entering sequence considers individual requests: if a customer is visited, only a 

subset of the demanded products can be delivered. This operator hence allows for 

a partial splitting of deliveries. The improvement procedure is initialized with  

     (i.e. no customer is removed). Each route of the current solution is scanned 

and possible replacements of satisfied customers/requests are examined. A move 

is accepted only if the difference between the inserted profit and the removed 
profit is strictly positive. The first acceptable move is performed and the local 

search procedure starts again with the sequence of b) – d) operators. If no improving 
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move can be determined with the current value of   , the search continues in 

inspecting possible replacements with                    .  

The determination of the entering sequence can be modeled as the elementary 

shortest path problem with resource constraints (ESPPRC) as follows. Let 

          be a complete undirected graph with        representing requests. 

An edge          has a cost              , a travel time                         

and a travel distance                        . In words, the cost is defined as the neg-

ative profit collected when going from   to  , while the travel time and the travel 

distance correspond both to the appropriate values in the original graph  . We also 

assume that       and       for each    . When an edge       is used in the 

path, resources are consumed. The resources that must be taken into account are 

the available time slot in the examined route and the capacities of the vehicle 

compartments. Optionally the original travel cost might be also considered. The 

resulting ESPPRC then consists of finding an elementary path (in the sense that no 

request can be visited more than once), respecting the resource limits and maximizing 

the total collected profit. The problem is known to be NP-hard. However, Feillet et 

al., 2004 proposed an effective label correcting algorithm for the ESPPRC. A similar 

implementation was used in the presented local search procedure. Although this 
approach is time consuming in general, the restricted solution space implied by the 

fact only a fraction of route is considered in every ESPPRC calculation renders the 

computation tractable. 

Preliminary results 

The first computational analysis of the proposed VNS was carried out on a set of 

test problems derived from the well-known Solomon’s benchmarks originally 

proposed for the VRPTW (Solomon, 1983). The data set contains 56 problems divided 

into six sets: C1, R1, RC1, C2, R2 and RC2. Each instance contains 100 customers 

plus the depot. The nodes are distributed in a 100 x 100 square around the depot 

which is positioned in the middle. Customers are clustered in sets C1 and C2, 
randomly distributed in sets R1 and R2 and mixed clustered and randomly distributed 

in sets RC1 and RC2. The travel cost and the travel time is calculated as the Euclidean 

distance, the latter rounded to one decimal. Each customer   has associated a randomly 

distributed demand    and a time window        . Instances in sets C2, R2 and RC2 

are characterized by wider time windows and are reputed to be harder to solve. 

The SMCVRPTW test instances were generated as follows. The number of 

compartments   was set to 2. The problem is already difficult with     and 

testing with larger values will be the task of further research. The demand of customer 

  for product 1 was calculated as      
  

 
, where         is a random value. The 

demand for the second product was calculated as            . The capacity of 

compartments was calculated as                  , where   is the vehicle 

capacity in the original VRPTW and    is the average demand for product  . The 

profit     was set to 1 equally for all requests. Finally, the number   of available 

vehicle ranged from 1 to 4. 
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The stopping condition of the algorithm was met when 1 500 iterations were 

encountered or if the number of non-improving iterations was equal to 300. The 

parameters used in the definition of solution neighborhoods were set as follows: 

      ,        and        . 

 

 

Fig. 1. Average results on SMCVRPTW instances. 

The computational experiments were carried out on a notebook equipped with a 

2.5 GHz dual core processor. The results were obtained with 5 runs, each time 

with a different rand seed setting. Table 1 presents the average results obtained per 

each data set. The first column contains the name of the instance set. In the second 
column is reported the number of problems solved within an instance set. The results 

are then reported for each  . The Table shows the first results obtained with the 

proposed VNS and therefore it is difficult to provide a detailed analysis at this 

moment, since there are no solutions to compare with. However, the average 

computing times at least show that the algorithm is capable to solve the problem 

within a reasonable time. The profit and the distance increases with increasing  , 

which is of course an expected behavior. Further experiments will be carried out 

in order to present a more complex analysis. 

Conclusion 

This paper presented the first of the SMCVRPTW. The problem involves several 

decision problems which makes the SMCVRPTW difficult to solve. However, it is 

relevant practical problem often encountered in a daily distribution of different 

kinds of goods. A metaheuristic solution based on the VNS was developed to address 

the problem. The key idea of the implemented algorithm is to explore new solution 

regions performing exchanges of satisfied and unsatisfied requests in the incumbent 

solution. A key component of the VNS is the local search which enables to optimize 
two objectives (the profit and secondary the travel cost) simultaneously and which 

uses an exact solution approach to determine the locally optimal sequence of requests.  

Data set # problems

Profit
Travel 

distance
Time (s) Profit

Travel 

distance
Time (s) Profit

Travel 

distance
Time (s) Profit

Travel 

distance
Time (s)

C1 9 18 102.3 85.3 32 174.3 120.5 45 296.2 188.2 87 320.4 205.6

C2 8 21 204.9 96.6 39 326.5 147.2 59 458.3 174.2 96 550.6 226.7

R1 12 11 196.2 75.4 28 386.4 153.9 42 496.8 193.1 75 578.1 209.3

R2 11 19 130.8 86.7 27 247.2 171.2 38 396.7 198.6 59 472.3 211.8

RC1 8 10 156.7 68.1 18 312.6 136.8 36 465.1 148.1 61 512.6 201.2

RC2 8 15 178.2 74.2 22 296.1 145.2 39 387.3 159.3 58 503.7 196.7

m = 1 m = 2 m = 3 m = 4
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Preliminary results were reported, however, more complex experiments must 

be carried out. The experiments will involve more test problems with larger values 

for the number of products and non-trivial values of the collected profits. Further 

research will be focused especially on the evaluation of ESPPRC within the local 

search framework and the benefits (losses) of the exact approach compared to 

some simple heuristic mechanism. A comparison with other solution approaches is 

also on the agenda.  
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