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Abstract. We consider a stochastic vehicle routing problem in which the customers are 

served according to a predefined sequence and the demands of the customers are discrete 
random variables. It is assumed that a penalty cost is imposed if a customer’s demand is not 
satisfied or if it is satisfied partially. The objective is the determination of the policy that 
serves the customers with the minimum total expected cost. A suitable dynamic programming 
algorithm is developed for the determination of the optimal policy. It is proved that the 
optimal policy has a specific threshold-type structure. 
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Introduction 

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem 

with significant applications in the fields of transportation, distribution and logistics. 

It consists of designing the optimal delivery routes of a fleet of vehicles that originate 

from one or several depots and deliver goods to N geographically scattered customers 

comprising the nodes of a predefined network. Four interesting variants of the 

VRP that have been studied extensively in the literature are: (i) the VRP with time 
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windows in which the delivering locations have time windows within which the 

deliveries must be made, (ii) the capacitated VRP (with or without time windows) 

in which the vehicles have limited carrying capacity, (iii) the VRP with backhauls 

in which the customers are divided into linehaul customers, each requiring a given 

quantity of product to be delivered, and backhaul customers, where a given quantity 

of products must be picked up and (iv) the VRP with pickup and delivery in which 

each customer is associated with two quantities representing the demands of products 

to be delivered and picked up. Suitable exact algorithms (e.g. branch-and-bound, 
branch-and-cut, branch-and-cut-and-price) and heuristics or metaheuristics (tabu 

search, simulated annealing, genetic algorithms, colony optimization) have been 

developed. The exact algorithms find the global minimum for the cost function. 

The heuristics and metaheuristics search for “good solutions” and in many cases 

the cost of their final routing strategy is equal to the global minimum. Surveys of 

models and solutions that are related to various versions of the VRP are presented in 

Toth and Vigo (2002), Simchi-Levi, Chen, and Bramel (2005), and Liong et al (2008). 

In the present paper we study a simple capacitated VRP in which a single vehicle 

with finite capacity starts its route from a depot and delivers a product to N customers 

according to a predefined sequence .1 N  The demand of the customer 

},,1{ Nj   for the product is a discrete random variable. The actual demand 

of each customer is revealed only upon the vehicle’s visit to the customer. We assume 

that it is permissible to satisfy partially or not to satisfy the demand of the customer 

if his/her demand exceeds the load of the vehicle. In this case a penalty cost is 

incurred. The vehicle after serving fully or partially the customers returns to the 

depot. Our objective is to find the routing strategy that minimizes the expected total 

cost during a visit cycle. This cost includes travel costs between consecutive customers, 

travel costs between customers and the depot and penalty costs due to unsatisfied 

demands. We present a dynamic programming algorithm that computes the optimal 

routing strategy. We choose as decision epochs of the problem the epochs at 

which the vehicle visits for the first time each customer and has satisfied as much 

of the customer’s demand as possible. We prove that the optimal policy has a specific 

threshold-type structure that is characterized by three critical numbers. Note that 

stochastic vehicle routing problems with a predefined customer sequence have 

been considered by Yang et al. (2000) and Pandelis et al. (2012, 2013). 

The routing problem and the optimal routing strategy 

Consider a set of nodes },,1 ,0{ NV   with node 0 denoting the depot and 

the nodes N , ,1   corresponding to customers. The customers are serviced in the 

order N , ,2 ,1   by a vehicle. Let },,,1{ , Njj   be the number of items 

of a particular product that customer j demands. It is assumed that j  is a discrete 

random variable with possible values , , ,1,0 Q  where Q is the capacity of the 

vehicle. The probability distribution of } , ,1{ , Njj   is assumed to be 

known. The actual demand of each customer is revealed only upon the vehicle’s 
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arrival at the customer’s site. We denote by ,1,,1 ,1,  Njc jj   the travel 

cost between customer j and customer 1j  and by ,,,1 , , 00 Njcc jj   the 

travel cost between customer j and the depot and the travel cost between the depot 

and customer j, respectively. These costs can be considered as the costs of the required 

driver’s labor and of the gasoline that the vehicle needs to cover the distances between 

successive customers or the distances between customers and the depot. It is reasonable 

to assume that these costs are symmetric and satisfy the triangle inequality, i.e. 

,,,1 ,00 Njcc jj   and .1,1, ,1,001,   Njccc jjjj   The road 

network is depicted in Figure 1. 
 

 

Fig. 1. The road network for the problem 

Assume that the vehicle starts its route from the depot loaded with Q items of 

the product. When the vehicle visits a customer },,1{ Nj   for the first time 

it satisfies as much demand as possible. Let },,{ QQz   be the number of 

items of the product carried by the vehicle after the first visit at customer’s j site. 

Negative values of z denote the unsatisfied demand. This is not possible for 1j  

since the vehicle starts its route with Q items. For }1,,1{  Nj   and 

},1,,0{  Qz   the vehicle either (i) proceeds directly to next customer 1j  

(action 1) or goes to the depot, restocks with load Q and then visits next customer 

1j  (action 2). When Qz   the only reasonable action is to proceed directly to 

next customer (action 1). For }1,,2{  Nj   and }1,,{  Qz  it has 

four choices: (i) to proceed directly to next customer 1j  (action 1), (ii) to go to 
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the depot to restock with load Q and then visit next customer 1j  (action 2), 

(iii) to go to the depot to restock with load Q, return to customer j to deliver 

},,1{ z   items of the product, and then proceed to next customer 1j  

with Q  items of the product (action 3) and (iv) to go to the depot to restock 

the owed quantity ,z  return to customer j, deliver the owed quantity, make a 

second trip to the depot to restock with load Q, and then proceed to next customer 

1j  (action 4). It is assumed that there is no extra demand when the vehicle returns 

to customer j, i.e. j  remains unaltered. Note that action 1 is included as a possible 

action in this case since it may favorable if 1, jjc  is relatively small and 1j  is 

zero. When action 1 or action 2 or action 3 (with )z  is selected, a penalty 

cost is incurred that is associated with unsatisfied demand. It is assumed that this 

penalty cost is equal to 0j  per item. Therefore, if action 1 or action 2 is selected 

the penalty cost is equal to ,jz  while, if action 3 is selected the penalty cost is 

equal to .)( jz   If Nj   and },,0{ Qz   the only possible action is 

to go to the depot to complete the visit cycle. If }1,,{  Qz  there are two 

options: (i) to go to the depot to complete the visit cycle and (ii) to go to the depot 

to restock the owed quantity ,z  return to customer N, deliver the owed quantity 

and then go to the depot to complete the visit cycle. If option (i) is selected a penalty 

cost that is equal to Nz  is incurred. Our objective is to determine a vehicle 

routing and replenishment strategy that minimizes the expected total cost during a 

visit cycle. 

Let ,,, ),( QQzzf j   denote the minimum expected future cost until 

the completion of a visit cycle when the number of items of the product carried by 

the vehicle after visiting customer },,1{ Nj   for the first time is equal to z. 

Thus, an optimal routing strategy can be determined by the following dynamic 

programming equations (see e.g. Eq. (6.5) in Bather’s (2000) book):  
 

For 1,,1  Nj   we have 

),Q(Efc)Q(f jjj,jj 111    
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For 1,,2  Nj   we have 
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In the boundary we have 

}.,,{  ),0(1},2min{)( 00 QQzzzcczf NNNN                                                                  

The minimum total expected cost during a visit cycle is equal to 

).( 11010  QEfcf   

In the above equations the expected values are taken with respect to the random 

variables .,,1 , Njj   The first term in the curly brackets in (1) corresponds 

to action 1 while the second term corresponds to action 2. The first term in the 

curly brackets in (2) corresponds to action 1, the second term corresponds to action 

2, the third term corresponds to action 3 and the fourth term corresponds to action 

4. It is possible to prove by induction on j the following lemma. 
 

Lemma 1. ,,,1 ),( Njzf j   is non-increasing in }.,,{ QQz   

A consequence of Lemma 1 is the following theorem that gives a characteriza-

tion of the optimal routing strategy. 
 

Theorem 1. 

i) For each customer }1,,1{  Nj   there exists a critical integer 

1( ) 0s j   such that it is optimal to select action 1 if ),(1 jsz   while if 

10 ( )z s j   it is optimal to select action 2. 

ii) For each customer }1,,2{  Nj   there exist two critical integers 

)( ),( 32 jsjs  (with )0)()( 23  jsjs  such that if 0)(2  zjs  the opti-

mal action is one of the actions 1 and 2, if )()( 23 jszjs   the optimal action 

is action 3 and if )(3 jsz   the optimal action is action 4. 

Numerical examples 

(a) Suppose that 5N  and .10Q  The travel costs between customers j  

and ,1j  ,4,,1j  are given by: 12 5,c   23 7,c   34 6c   and 

45 5.c   The travel costs between customers ,j ,5,,1j  and the depot are 

given by: 10 6,c   20 10,c   30 8,c   40 7c   and 50 9.c   Note that these 

costs satisfy the triangle inequality. The penalty costs for customers 

}5,4,3,2{j  are given by ).2,9.1,7.1,2(),,,( 5432   We further as-

sume that for each customer ,5,,1j  the demand j  of the customer j for 

the product has the following probability mass function: 
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For ,2  we implemented the dynamic programming algorithm and we 

found that the optimal routing strategy is characterized by the critical numbers 

,3 ,2 ,1 ),( ijsi  presented in Table 1, for each customer }.4 ,3 ,2 ,1{j  
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Table 1. The critical numbers for each customer 

j )(1 js  )(2 js  )(3 js  

1 2 - - 

2 1 -10 -9 

3 0 -6 -10 

4 0 -6 -10 
 

In Table 2 below, we present the actions selected by the optimal policy for each 

customer ,j .4,,1j  Each row of the table corresponds to each customer ,j  

,4,,1j  and each column of the table corresponds to the number 

{ 10, ,0, ,10}z  of items of the product. 

Table 2. The actions selected by the optimal policy 

j -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 

1 - - - - - - - - - - 2 2 1 1 1 1 1 1 1 1 1 

2 4 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

The value of the minimum total expected cost during a visit cycle is equal to 

0 01 1 1( ) 40.441.f c Ef Q      In Table 3 we present the optimal value of 

  for customer }4 ,3{j  when the optimal action is action 3. The symbol “-” 

indicates that action 3 is not optimal. 

Table 3. The value of optimal   for 3rd and 4th customer 

j\z -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 

3 8 8 6 6 6 - - - - - 

4 9 8 6 7 6 - - - - - 

 

From the above table it is deduced that if, for example, the owed quantity after 

the first visit of the vehicle at the site of the third customer is 8 items of the prod-

uct then it is optimal to go to the depot to restock with 10 items, to return to the 

third customer to deliver 6 items and proceed to fourth customer. In this case the 

penalty cost is equal to 32 3.4.   

(b) Suppose that 8N  and .8Q  The travel costs between customers j  

and ,1j  ,7,,1j  are given by: 12 2,c   23 3,c   34 2,c   45 1,c   

56 3,c   67 4c   and 78 2.c   The travel costs between customers ,j
,8,,1j  and the depot are given by: 10 3,c   20 5,c   30 4,c   40 7c   

50 5,c   60 3,c   70 5c   and 80 3.c   Note that these costs satisfy the triangle 

inequality. We assume that, for each customer ,8,,2 j  the penalty cost j  

is equal to 1.7. We further assume that for each customer ,8,,1j  the de-

mand j  for the product follows the Binomial distribution ),,( pQBin  i.e. 
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For ,3.0p  in Table 4 below, we present the actions selected by the optimal 

policy for each customer ,j  .7,,1j  Each row of the table corresponds to 

each customer ,j  ,7,,1j  and each column of the table corresponds to the 

number { 8, ,0, ,8}z  of items of the product. 

Table 4. The actions selected by the optimal policy 

j
 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

1 - - - - - - - - 2 2 1 1 1 1 1 1 1 

2 4 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 

3 4 4 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 

4 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 

5 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 

6 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 

7 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

In Table 5 below, we present the optimal value of ,  for customer 

}7,2{ j  when the optimal action is action 3. The symbol “-” indicates that 

action 3 is not optimal. 

Table 5. The value of optimal   for customer }7,2{ j  

j\z -8 -7 -6 -5 -4 -3 -2 -1 

2 - - 5 5 - - - - 

3 - - 4 4 3 3 2 - 

4 6 6 6 3 4 3 2 - 

5 5 5 5 5 4 - - - 

6 4 5 6 4 4 2 2 - 

7 6 6 5 5 - - - - 
 

The value of the minimum total expected cost during a visit cycle is equal to 

..)Q(Efcf , 7892411100    

Concluding remarks 

In this paper we proposed a dynamic programming method for a particular capacitated 

vehicle routing problem in which a single vehicle starts its route from a depot and 

delivers a product to N customers according to a particular order. The demands of 

the customers for the products are stochastic and each customer’s demand is less 

than or equal to the vehicle capacity. A customer’s demand may not be satisfied or 
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may be satisfied partially. We selected as decision epochs the epochs at which the 

vehicle visits for the first time each customer and has satisfied as much of the 

customer’s demand as possible. The cost structure of the problem includes travel 

costs between consecutive customers, travel costs between customers and the depot 

and penalty costs due to unsatisfied demands. It is proved that the policy that 

minimizes the expected total cost divides the set of all possible loads carried by 

the vehicle after the first visit to each customer into five disjoint subsets. If the 

load of the vehicle belongs to the first set, then the optimal decision is to proceed 
to the next customer. If it belongs to the second subset, then it is optimal to go to 

the depot for restocking, and then to proceed to the next customer. If it belongs to 

the third subset, then it is optimal not to satisfy the remaining demand and to proceed 

directly to next customer or to go to the depot for restocking and then proceed to 

next customer. If it belongs to the fourth subset, then it is optimal to go to the depot 

for restocking, to return to the customer in order to satisfy fully or partially the 

remaining demand and then proceed to next customer. If it belongs to fifth subset, 

then it is optimal to go to the depot to restock the owed quantity, to return to the 

customer to deliver the owed quantity, to make a second trip to the depot for 

restocking, and then to go to next customer.  
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