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Abstract. In this study, we give a method which allows finding the exact optimal solution 

of a strictly concave quadratic program. The optimisation of a strictly concave program is 

based on the localisation of the critical point. If the critical point doesn't belong to the feasible 

solution set the projection onto the hyperplanes passing through the nearest vertex to the 

critical point gives exactly the optimal solution. 
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Introduction 

Let's consider the following quadratic problem   : 

   

 
 
 

 
 

   
    

                    
 

 

   

  

The coefficients    are any real numbers and        . Let   be the convex set 

formed by the constraints       , where   is a     real matrix and   is a vector 

of   
 .    is a closed bounded set of   . So    is strictly concave. 

A strictly concave quadratic program can be solved with several methods: the 

conditional-gradient method, also called the Frank-Wolfe method developed by 

M. Frank and Ph. Wolfe (1956). It is the most useful method for the nonlinear 

optimization (see Freund (2004)), the Rosen method (1960). We cite also the 

Simplex method for quadratic programming detailed by Jensen and Bard (2004). 
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These methods give only approximate solutions where the difference will be 

insignificant if the alterations are kept small. Jensen and Bard (2004) and De Wolf 

(2006) have treated an example with two variables. By applying the Simplex 

method they have manipulated ten variables. A new algorithm was proposed by 

Chikhaoui et al (2011) for finding the exact optimal solution without any introduction 

of any variable. The algorithm is based on the localisation of the local 

mum     
  

   
. If      then, it is the global optimum. 

Otherwise, the projection of x onto the separating hyperplanes of a new feasible 

constraint set built by the transformation of Ω gives exactly the global optimum. 

But, in some cases, this algorithm can give an infeasible solution. In this case, we 

proof, in this paper, that the optimal solution is the nearest vertex to   , and we 

give the general steps for finding the optimal solution. When the program is not 

strictly concave, we may always perturb the objective function to obtain a strictly 

concave problem for any    . 

Projection formula 

Let                       here            are given. Suppose that  

     . That is:            or            . 

Let        such that the following equality holds:          , with some 

positive or negative constant  . The vector        is then parallel to the 

hyperplane  . For any      the equality           holds. We see that 

            i.e.                , and thus the following relation 

for   is obtained:    
         

      as       . 

Let        in such way that                ). For next, we have      

             
          

   
  and                 , and thus we hold 

          

   
                   . 

As the application            here                    defined on  

   is linear and continuous, then                                

             So that the following inequality holds 
           

   
         

and consequently we obtain         
          

   
  Thus,         

          

   
 

                . 

We see then that      . Consequently                 
        

    
  . 

Ho ever, the use of this formula doesn’t give al ays a feasible solution  see example 

1); we prove in the next, that the optimal solution is either the nearest vertex to the 

critical point or the projection onto the hyperplanes passing through this vertex. 
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Condition for a solution to be an extreme point 

Let   be any hyperplane that separates    and  , and let      be two extreme 

points in  . The following theorem holds: 

 

Theorem. If the projection of    onto the straight passing through    and    

doesn't belong to   , then    is an extreme point. 

Proof. Let’s consider      the projection of   onto the straight passing through    

and   . We know that              for any   of this straight. For any   
       , we have            . So                            

                  , and thus                        
                             . If           , then           
         , and so                      .  Consequently          
       , and                . For particular            
                , we obtain                    , and so         

              
   

  Consequently      . 

Algorithm for finding the optimal solution  

We give here, the general steps for finding the optimal solution of a strictly concave 

quadratic program.  

1. If           then transform the convex; 

2. Calculate the critical point     
  

   
 for all        ; 

3. Find the nearest vertex to    . Let   be this vertex. 

4. Choose a separating hyperplane passing through   then project    onto 

this hyperplane; 

5. If the projection gives a feasible solution then the optimal solution is 

      , where    is the projection of   ; 

6. If the projection gives infeasible solutions  repeat the steps 4 and 5; 

7. If all projections give infeasible solutions, the optimal solution is  . 

As a conclusion, the optimal solution of a strictly concave quadratic program 

can be reached at: 

1. an interior point if the critical point belongs to the feasible constraints set;  

2. a boundary point if the projection of the critical point onto a separating 

hyperplane gives a feasible solution; 

3. an extreme point in the other cases. 

This algorithm is solvable in polynomial time and reaches always his optimum:  

the convex set is compact, there is, at least, one vertex that is the nearest to    

which belongs to one separate hyperplane.  
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Examples  

To demonstrate the feasibility of the proposed algorithm, the following examples 

are solved. The results are compared with those obtained using MINOS 5.51 and 

CPLEX 11.2.0 (http://www.ampl.com/DOWNLOADS/detail.html, accessed 23 

February 2012) used with AMPL Student Edition (http://www.ampl.com/, accessed 

23 February 2012).  

Example 1 

 
 
 

 
 

   
       
        

max                  

   
     

 

  

 

The coefficients          , and the critical point           . Using 

the algorithm proposed by Chikhaoui et al (2011) the projections onto all the 

separating hyperplanes         and          give infeasible solutions. 

This example is a counterexample of this algorithm. From figure 1, we can easily 

verify that          is the nearest vertex to    . So it is the optimal solution of  . 

Using the CPLEX, an approximate solution is found using 14 separable QP barrier 

iterations. 

 

 
 

Fig. 1. Projections give infeasible solutions. The optimal solution is the extreme point    
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Example 2 

 
 
 

 
 

   
        
         

max                 

   
     

 

  

 

The coefficients          , and the critical point     
 

 
 
 

 
   . The 

nearest vertex to   is        . The projection onto the hyperplane         

  gives a feasible solution              . So   is the optimal solution. Using 

MINOS, we can obtain this solution after 4 iterations. CPLEX gives an approximate 

solution using 13 separable QP barrier iterations. 

Conclusion 

In this paper we have given a general steps for finding the exact optimal solution 

of a strictly concave quadratic program. The algorithm proposed by Chikhaoui et 

al (2011) allows finding the exact solution in many situations. But, it can give 

infeasible solutions because the formula given in the precedent section and used 

by Chikhaoui et al (2011) allows projecting the critical point onto all the separating 

hyperplanes   and not only on    .  Finally, the proposed algorithm can be used 

for searching the optimal solution of a convex quadratic program: The optimal 

solution is the farthest vertex to the critical point. 
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